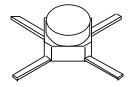


2-16 GHz Low Noise Gallium Arsenide FET

Technical Data

ATF-13336

Features


- Low Noise Figure: 1.4 dB Typical at 12 GHz
- **High Associated Gain:** 9.0 dB Typical at 12 GHz
- High Output Power: 17.5 dBm Typical P_{1 dB} at 12 GHz
- Cost Effective Ceramic Microstrip Package
- Tape-and-Reel Packaging Option Available^[1]

Description

The ATF-13336 is a high performance gallium arsenide Schottky-barrier-gate field effect transistor housed in a cost effective microstrip package. Its premium noise figure makes this device appropriate for use in low noise amplifiers operating in the 2-16 GHz frequency range.

This GaAs FET device has a nominal 0.3 micron gate length with a total gate periphery of 250 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

36 micro-X Package

Electrical Specifications, $T_A = 25$ °C

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
NF_{O}	Optimum Noise Figure: $V_{DS} = 2.5 \text{ V}, I_{DS} = 20 \text{ mA}$	f = 8.0 GHz	dB		1.2	1.0
		f = 12.0 GHz f = 14.0 GHz			1.4 1.6	1.6
G_{A}	Gain @ NF _O : $V_{DS} = 2.5 \text{ V}$, $I_{DS} = 20 \text{ mA}$	f = 8.0 GHz	dB		11.5	
		$f = 12.0 \mathrm{GHz}$	dB	8.0	9.0	
		$f = 14.0 \mathrm{GHz}$	dB		7.5	
P _{1 dB}	Power Output @ 1 dB Gain Compression:	f = 12.0 GHz	dBm		17.5	
	$V_{DS} = 4 V, I_{DS} = 40 \text{mA}$					
$G_{1 dB}$	$1 \text{ dB Compressed Gain: } V_{DS} = 4 \text{ V}, I_{DS} = 40 \text{ mA}$	$f = 12.0 \mathrm{GHz}$	dB		8.5	
\mathbf{g}_{m}	Transconductance: $V_{DS} = 2.5 \text{ V}, V_{GS} = 0 \text{ V}$		mmho	25	55	
I_{DSS}	Saturated Drain Current: $V_{DS} = 2.5 \text{ V}, V_{GS} = 0 \text{ V}$		mA	40	50	90
V_{P}	Pinch-off Voltage: $V_{DS} = 2.5 \text{ V}$, $I_{DS} = 1 \text{ mA}$		V	-4.0	-1.5	-0.5

Note:

1. Refer to PACKAGING section "Tape-and-Reel Packaging for Surface Mount Semiconductors".

5965-8724E 5-36

ATF-13336 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]	
V_{DS}	Drain-Source Voltage	V	+5	
V_{GS}	Gate-Source Voltage	V	-4	
$V_{ m GD}$	Gate-Drain Voltage	V	-6	
I_{DS}	Drain Current	mA	I_{DSS}	
P_{T}	Power Dissipation [2,3]	mW	225	
T_{CH}	Channel Temperature	°C	175	
T_{STG}	Storage Temperature	°C	-65 to +175	

Thermal Resistance:	$\theta_{\rm jc} = 400$ °C/W; $T_{\rm CH} = 150$ °C
Liquid Crystal Measurement:	1 μmSpotSize ^[5]

Part Number Ordering Information

Part Number	Devices Per Reel	Reel Size		
ATF-13336-TR1	1000	7"		
ATF-13336-STR	10	strip		

ATF-13336 Noise Parameters: $V_{DS} = 2.5 \text{ V}$, $I_{DS} = 20 \text{ mA}$

Freq. NF _O		Γ	D /50		
GHz	dB	Mag Ang		$ R_N/50$	
4.0	0.8	.63	93	.27	
6.0	1.1	.47	138	.10	
8.0	1.2	.40	-153	.20	
12.0	1.4	.52	-45	.88	
14.0	1.6	.57	-2	1.3	

ATF-13336 Typical Performance, $T_A = 25^{\circ}C$

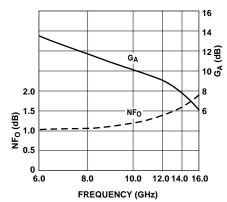


Figure 1. Optimum Noise Figure and Associated Gain vs. Frequency. $V_{DS}=2.5V,\,I_{DS}=20\,\,\text{mA},\,T_{A}=25^{\circ}C.$

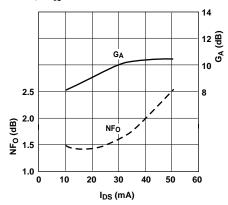
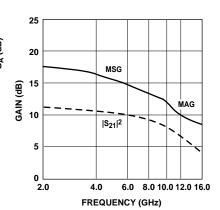
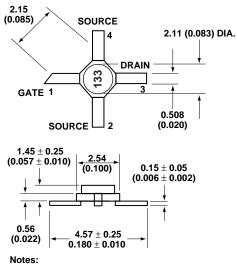



Figure 2. Optimum Noise Figure and Associated Gain vs. I_{DS} . $V_{DS} = 2.5V$, f = 12.0~GHz.

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE\ TEMPERATURE} = 25$ °C.
- 3. Derate at 2.5mW/°C for $T_{CASE} > 85$ °C.
- 4. Storage above +150°C may tarnish the leads of this package difficult to solder into a circuit. After a device has been soldered into a circuit, it may be safely stored up to 175°C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section for more information.


 $\label{eq:figure 3.} Figure 3. Insertion Power Gain, \\ Maximum Available Gain and \\ Maximum Stable Gain vs. Frequency. \\ V_{DS} = 2.5 \ V, I_{DS} = 20 \ mA.$

 $\textbf{Typical Scattering Parameters,} \ Common \ Emitter, \ Z_O = 50 \ \Omega, T_A = 25 ^{\circ}\!C, V_{DS} = 2.5 \ V, I_{DS} = 20 \ mA$

Freq.	S	S ₁₁		\mathbf{S}_{21}		\mathbf{S}_{12}		S	22	
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
2.0	.96	-51	10.6	3.39	127	-27.1	.044	57	.61	-41
3.0	.88	-75	10.3	3.28	106	-23.4	.060	33	.58	-51
4.0	.86	- 96	10.1	3.19	86	-22.6	.074	25	.57	-57
5.0	.79	-117	9.9	3.13	66	-20.6	.093	12	.54	-65
6.0	.69	-142	10.2	3.22	46	-18.9	.114	1	.49	-79
7.0	.60	-178	10.1	3.21	21	-17.6	.132	-18	.42	-97
8.0	.54	141	9.8	3.10	- 4	-17.3	.137	- 33	.31	-112
9.0	.56	103	8.9	2.80	-26	-16.7	.147	-48	.21	-121
10.0	.56	74	8.3	2.60	-48	-16.5	.150	- 63	.09	-145
11.0	.58	44	7.6	2.39	-68	-16.8	.145	-78	.07	89
12.0	.63	20	6.7	2.17	-90	-17.5	.133	- 95	.16	43
13.0	.65	3	6.0	2.00	-108	-18.3	.121	-107	.19	21
14.0	.66	-7	5.5	1.89	-126	-18.9	.114	-121	.19	-4
15.0	.70	-19	4.9	1.76	-144	-19.0	.112	-129	.16	-28
16.0	.72	-34	4.4	1.66	-175	-19.2	.110	-142	.14	-32

A model for this device is available in the DEVICE MODELS section.

36 micro-X Package Dimensions

- 1. Dimensions are in millimeters (inches)
- 2. Tolerances: in .xxx = \pm 0.005 mm .xx = \pm 0.13