SERIES D195
The Series D195 voltage-controlled linearized attenuator/modulators are integrated assemblies consisting of a Series 195 unit and a hybridized driver circuit which provides a nominal transfer function of 10 dB per volt. (See figure 1 below.)

Fig. 1-Series D195, block diagram

All of the Series D195 units except the D1950A* exhibit fall times of 20 nsec max and rise times of 1.5 µsec max for attenuation steps of 10 dB or more. For smaller excursions, the fall times can increase to several hundred nsec, while the rise times remain essentially unchanged. In applications where a rapid return to insertion loss from any level of attenuation is required, Option 59 is available. With this option, an external pulse is applied to trigger a high-speed reset circuit, and recovery times of 200 nsec max are obtained. Where use of an external reset pulse as described above is not feasible, an internal reset option (Option 58) is available which will automatically reset the unit to insertion loss within 200 nsec for a step of 50 dB or more.

The fall and rise time specifications for the D1950A* are 500 nsec max and 10 µsec max, respectively. Options 58 and 59 are not available for this model.

*Model D1950A is a special-order product. Consult factory before ordering.
Series D195
Specifications

PERFORMANCE CHARACTERISTICS

Mean Attenuation Range
- D1950A*.......................80 dB
- All other units..............60 dB

Accuracy of Attenuation
- 0-30 dB......................±0.5 dB
- >30 to 50 dB..............±1.0 dB
- >50 to 60 dB..............±1.5 dB
- >60 to 80 dB..............±2.0 dB

Monotonicity..................Guaranteed

Phase Shift....................See page 44

Temperature Coefficient......±0.035 dB/°C

Power Handling Capability
- Without Performance Degradation
 - D1950A*, D1951...........10 mW cw or peak
 - All other units...........100 mW cw or peak

Survival Power (from –65°C to +25°C; see figure 2 for higher temperatures)
- All Units..................1W average
- 25W peak (1 μsec max pulse width)

Switching Characteristics
- OFF Time
 - D1950A*.....................600 nsec max
 - All other units............100 nsec max

ON Time
- D1950A*.....................10 μsec max
- All other units.............1.6 μsec max

Fall Time
- D1950A*.....................500 nsec max
- All other units.............30 nsec max

Rise Time
- D1950A*.....................10 μsec max
- All other units.............1.5 μsec max

Nominal Control Voltage Characteristics

<table>
<thead>
<tr>
<th>Model</th>
<th>Range</th>
<th>Operating Voltage</th>
<th>Maximum Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1950A*</td>
<td>0 to +8V</td>
<td>±15V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±15V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1951</td>
<td>0 to +8V</td>
<td>±15V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±15V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1952</td>
<td>0 to +6V</td>
<td>±15V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±15V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1953</td>
<td>0 to +6V</td>
<td>±15V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±15V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1954</td>
<td>0 to +6V</td>
<td>±15V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±15V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1955</td>
<td>0 to +6V</td>
<td>±15V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±15V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1956</td>
<td>0 to +6V</td>
<td>±15V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±15V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1958</td>
<td>0 to +6V</td>
<td>±15V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±15V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ON Time
- D1950A*.....................10 μsec max
- All other units.............1.6 μsec max

Fall Time
- D1950A*.....................500 nsec max
- All other units.............30 nsec max

Rise Time
- D1950A*.....................10 μsec max
- All other units.............1.5 μsec max

Transfer Function10 dB/volt

Input Impedance10 kΩ

Modulation Bandwidth

Small Signal
- D1950A*.....................25 kHz
- All other units.............500 kHz

Large Signal
- D1950A*.....................5 kHz
- All other units.............50 kHz

Power Supply

Requirements+12V ±5%, 100 mA
- –12V ±5%, 50 mA

Power Supply

RejectionLess than 0.1 dB/volt
change in either supply

*Model 1950A is a special-order product. Consult factory before ordering.
Series D195
Specifications

ENVIRONMENTAL RATINGS

<table>
<thead>
<tr>
<th>Operating Temperature</th>
<th>Range</th>
<th>–54°C to +110°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Operating Temperature</td>
<td>Range</td>
<td>–65°C to +125°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>MIL-STD-202F, Method 103B, Cond. B (96 hrs. at 95%)</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>MIL-STD-202F, Method 204D, Cond. B (.06" double amplitude or 15G, whichever is less)</td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>MIL-STD-202F, Method 105C, Cond. B (50,000 ft.)</td>
<td></td>
</tr>
</tbody>
</table>

AVAILABLE OPTIONS

<table>
<thead>
<tr>
<th>Option No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>SMA female control connector</td>
</tr>
<tr>
<td>7</td>
<td>Two SMA male RF connectors</td>
</tr>
<tr>
<td>10</td>
<td>One SMA male (J1) and one SMA female (J2) RF connector</td>
</tr>
<tr>
<td>58</td>
<td>Internally-generated reset to insertion loss (not available on D1950A)(1)</td>
</tr>
<tr>
<td>59</td>
<td>Externally-triggered reset to insertion loss (not available on D1950A)(2)(3)</td>
</tr>
<tr>
<td>61</td>
<td>20 dB/volt transfer function with 0 to +3V control signal input (+4V for the D1950A*)</td>
</tr>
<tr>
<td>62</td>
<td>±15 volt operation</td>
</tr>
<tr>
<td>64</td>
<td>SMC male control connector</td>
</tr>
<tr>
<td>64A</td>
<td>SMB male control connector</td>
</tr>
</tbody>
</table>

(1) Where use of an Option 59 external reset pulse (see note 2 below) is not feasible, this option is available which will automatically sense the slope and magnitude of the control signal and reset the unit to the insertion loss state within 200 nsec for a step of 50 dB or more.
(2) An external terminal is provided for the user to apply a fast (10 nsec max rise time) positive-going 3-volt pulse at least 0.5 μsec wide to accelerate the return of the attenuator to the insertion loss state with the simultaneous lowering of the control signal to the zero voltage level. This reset can be accomplished within 200 nsec.
(3) The input impedance of units equipped with Option 59 is a circuit equivalent to approximately 50 pF in series with a parallel combination of 100 pF and 1000 ohms.

Fig. 2-Series D195, power derating factor

*Model D1950A is a special-order product. Consult factory before ordering.
Attenuators

PHASE SHIFT vs. ATTENUATION

All attenuators exhibit a variation in phase shift with attenuation level (AM/PM modulation). Fig. 6 shows typical phase shift variation as a function of attenuation for a number of GMC attenuator models. The phase shift is attributable to both the stray reactance of the PIN diodes as well as the lengths of transmission line interconnecting the diodes. While it is possible to minimize the AM/PM by careful design, it is not possible to eliminate it entirely. Where minimum change of phase with attenuation is a critical parameter, the use of GMC’s line of Phase Invariant Attenuators described above should be considered.

MODELS 1952, D1952 & 3492-64

MODELS 1954, D1954 & 3494-64

MODELS 1958, D1958 & 3498-64

MODELS D1960 & 3460C

MODELS D1968B, 1761 & 3468C

MODELS 1959, D1959 & 3499

Fig. 6–Typical Phase vs. Attenuation & Frequency
Series D195
Specifications

DIMENSIONS AND WEIGHTS

Dimensional Tolerances, unless otherwise indicated: XX ±.02; XXX ±.005