

SL6640C

LOW POWER IF AMPLIFIER, FM DETECTOR AND AUDIO POWER AMPLIFIER

The 6640C performs the IF/AF function of a low power FM receiver. The circuit consists of a preamplifier, main limiting amplifier, quadrature detector, carrier squelch system, DC volume control and power audio output stage. With the SL6640C the demodulator and audio amplifier are muted by the squelch output.

FEATURES

- Carrier Squelch System
- High Sensitivity: 10 μV rms Minimum
- Low Power: 12 mA Typical at 6V
- High Power Output: 200 mW Typical

APPLICATIONS

- Broadcast FM Radio
- Low Power NBFM Receivers

QUICK REFERENCE DATA

- Supply Voltage: 6V
- IF Frequency: 4.5MHz to 21.4MHz

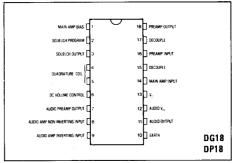


Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

Supply voltage: 12V

Storage temperature: -55°C to +150°C

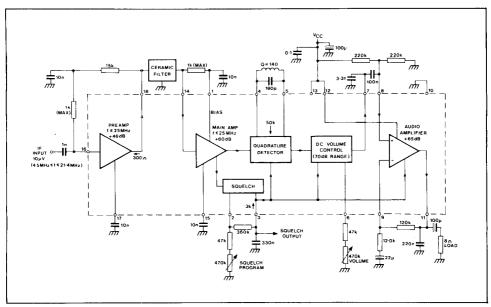


Fig.2 SL6640 block diagram

ELECTRICAL CHARACTERISTICS SL6640C

Test conditions (unless otherwise stated):

Supply voltage, $V_{CC} = 6V$, $R_L = 8\Omega$

Ambient temperature, T_A = -30°C to +85°C

IF = 10.7MHz, frequency modulated with 1kHz tone with ±5kHz frequency deviation

Characteristic	Value			11	0 - 4/4/
	Min.	Тур.	Max.	Units	Conditions
Supply current		4.5	8.0	mA	Muted
Supply current		12	16	mA	Unmuted
Pre-amp gain		46		dB	
Main amp. gain		60	l	dB	
Combined 3dB bandwidth		25		MHz	
S/N ratio	30	50		dB	1mV rms input
Sensitivity	10			μVrms	20dB S+N/N ratio @ 25°C
AM rejection	25	35		dB	input 30% AM 100µV rms input
Audio O/P power	150	250		mWrms	1mV rms input
Total harmonic distortion		2	5	%	150mW rms output power
Squelch range	l	45		dB	
Squelch law	1	2		μA/dB	
Squelch hysteresis		10		dB	Hysteresis resistor = $360k\Omega$
DC volume control range	50	70	1	dB	
DC volume control law		2	1	μA/dB	
Squelch O/P low level		1	1.5	· · v	100μVrms input
Squelch O/P high level	4.5	5		V	No input

APPLICATION NOTES

IF Amplifiers

The SL6640C is intended for use at frequencies between 4.5MHz and 21.4MHz and will not operate at 455kHz. It should be preceded by a filter to determine the primary selectivity of the receiver. The input impedance is set by an external resistor connected to pin 16 as shown in Fig.2.

An interstage ceramic filter between the preamplifier and main amplifier provides some limitation of the noise bandwidth. The input impedance at Pin 14 is again determined by the choice of external resistance.

Quadrature Detector

The quadrature circuit is connected between Pins 4 and 5. Normally this consists of a resonant LC circuit and the high impedance level allows Q factors of over 100 if needed. A DC path should be provided between the pins if possible.

Squelch Facility

The integral carrier squelch system is driven by detectors in the main amplifier and contains a comparator which requires an input to set the squelch level. A resistor between Pins 2 and 3 provides hysteresis; the value depends on the supply voltage but a $360 \text{k}\Omega$ resistor gives 10 dB hysteresis with a 6 V supply.

A squelch output (high when squelched) is available from pin 3 and is used to mute the detector, volume control and audio amplifier.

Audio Amplifier

The audio output stage is similar in design to the SL6310 and is arranged as an operational amplifier. The input signal is applied to the non-inverting input and gain is set to 20dB externally.

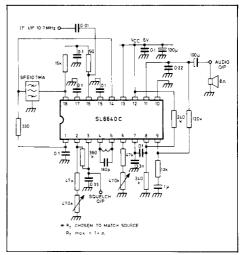


Fig.3 SL6640C test circuit