SP8610 1000MHz ÷ 4 **SP8611** 1300/1500MHz ÷ 4

The SP8610/11 are asynchronous ECL divide by four circuits, with ECL compatible outputs which can also be used to drive 100 ohm lines. They feature input sensitivities of 600mV p-p (800mV p-p above 1300MHz).

FEATURES

- ECL Compatible Outputs
- AC Coupled Input (internal bias)

QUICK REFERENCE DATA

- Supply Voltage: -5.2V
- Power Consumption: 380mW
- Max. Input Frequency: 1500MHz (SP8611B)
- Temperature Range:

A Grade: -55°C to + 110°C (+125°C with suitable heatsink)

B Grade: 0°C to + 70°C ORDERING INFORMATION

SP8610 A DG SP8610 B DG **SP8610 AB DG SP8610 AA DG** SP8611 A DG SP8611 B DG **SP8611 AB DG** SP8611 AA DG

ABSOLUTE MAXIMUM RATINGS

Supply voltage -8V Output current 15mA -55°C to +150°C Storage temperature range +175°C Max. junction temperature Max. clock I/P voltage 2.5V p-p

Fig.2 Functional diagram

Fig.1 Pin connections - top view

SP8610/11A & B

ELECTRICAL CHARACTERISTICS

Supply voltage: $V_{CC} = 0V - V_{EE} = -5.2V = 0.25V$ Temperature: T_{CASE} (A grade) = -55°C to -125°C (Note 2) T_{anib} (B grade) = 0°C to -70°C

Characteristic	Symbol	Value		Units	Grade	Conditions	Note
		Min.	Max.	Onits	Grade	Conditions	Hole
Maximum frequency	fmax	1.0		GHz	SP8610A,B	Input = 400-1200mV	Note 5
		1.3		GHz	SP8611A	Input = 800-1200mV	Note 7
		1.5		GHz	SP8611B	Input 800-1200mV	Note 7
Minimum frequency	fmin		150	MHz	All	Input = 600-1200mV	Note 5
Current consumption	lee		100	mA	AII	VEE -5.45V	Note 6
		ŀ				Outputs unloaded	
Output low voltage	Vol	-1.92	-1.62	V	All	V _{EE} = -5.2V outputs	
						loaded with 430Ω(25°C)	
Output high voltage	Vон	-0.93	-0.75	V	All	VEE = -5.2V outputs	
		l	İ			loaded with 430Ω(25°C)	
Minimum output swing	Vout	500	l	mV	All	VEE = -5.2V outputs	Note 6
						loaded with 430Ω	

NOTES

- Unless otherwise stated the electrical characteristics shown above are guaranteed over specified supply, frequency and temperature range
- The A grade devices must be used with a heat sink to maintain chip temperature below +150°C when operating in an ambient of +125°C
- The temperature coefficients of VoH = +1.2mV/°C and VoL = +0.24mV/°C but these are not tested.
- The test configuration for dynamic testing is shown in Fig.5. Tested at 25°C and +125°C only (+70°C for B grade).
- Tested at 25°C only
- Tested at +125°C only (+70°C for B grade)

specified in table of Electrical Characteristics

*Tested as

Fig.3 Typical input characteristics

THERMAL CHARACTERISTICS

θuc approximately 30°C/W θ_{JA} approximately 110°C/W

OPERATING NOTES

- 1. The clock input (pin 4) should be capacitively coupled to the signal source. The input signal path is completed by connecting a capacitor from the internal bias decoupling, pin 6 to ground.
- 2. If no signal is present the device will self-oscillate. If this is undesirable it may be prevented by connecting a 10k resistor from the input to VEE (i.e. Pin 4 to Pin 7). This reduces sensitivity by approximately 100mV.
- 3. The input can be operated at very low frequencies but

slew rate must be better than 200V/us.

- 4. The input impedance of the SP8610/11 is a function of frequency. See Fig. 4.
- 5. The emitter follower outputs require external load resistors. These should not be less than 330 ohms, and a value of 430 ohms is recommended. Interfacing to ECL III/10K is shown in Fig. 7.
- These devices may be used with split supply lines and ground referenced input by means of the circuit of Fig. 6.

Fig.4 Typical input impedance. Test conditions: supply voltage -5.2V, ambient temperature 25°C, frequencies in MHz, impedances normalised to 50 ohms.

Fig.5 Toggle frequency test circuit

Fig.6 Circuit for using the input signal about earth potential

SP8610/11

Fig.7 Interfacing SP8611 series to ECL 10K and ECL III

Fig.8 Typical application showing interfacing