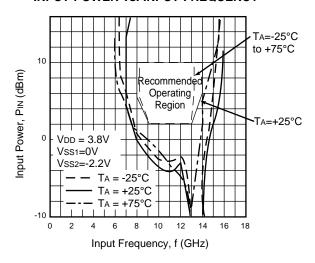


14 GHz DIVIDE-BY-8 DYNAMIC PRESCALER

UPG506B


FEATURES

- WIDE OPERATING FREQUENCY RANGE: f = 8 to 14 GHz (TA = 25°C)
- LOW PHASE NOISE
- GUARANTEED OPERATING TEMPERATURE RANGE (TA = -25°C to +75°C)

DESCRIPTION

The UPG506B is a GaAs divide-by-8 prescaler capable of operating up to 14 GHz. It is designed for use in frequency synthesizers of microwave communication systems and measurement equipment. The UPG506B is a dynamic frequency divider and employs BFL (Buffered FET Logic) circuits. The UPG506B is available in a hermetic 8-lead ceramic flat package.

INPUT POWER vs. INPUT FREQUENCY

ELECTRICAL CHARACTERISTICS (TA = 25°C, VDD = +3.8 V, VSS1 = 0 V, VSS2 = -2.2 V)

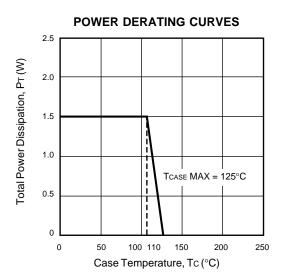
PART NUMBER PACKAGE OUTLINE			UPG506B BF08		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
IDD	Supply Current	mA	70	105	140
Iss1	Sink Current ¹ Iss1 = IDD - Iss2	mA		35	
ISS2	Sink Current ¹	mA	44	70	96
fIN(U)	Upper Limit of Input Frequency at PIN = +6 dBm	GHz	14		
fIN(L)	Lower Limit of Input Frequency at PIN = +6 dBm	GHz			8
Pin	Input Power at f = 9 to 13 GHz	dBm	2.0		10.0
Роит	Output Power at fin = 14 GHz	dBm	0	2.0	
Rтн(сн-с)	Thermal Resistance (Channel to Case)	°C/W		10.0	

Note:

1. Current is positive into the IDD pin and returns through the ISS1 and ISS2 pins.

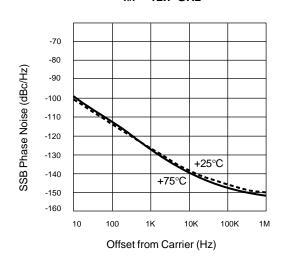
ELECTRICAL CHARACTERISTICS (TA = -25°C to +75°C, VDD = +3.8 V, Vss1 = 0 V, Vss2 = -2.2 V)

PART NUMBER PACKAGE OUTLINE			UPG506B BF08		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
IDD	Supply Current	mA		105	
Iss1	Sink Current ¹ Iss1 = IDD - Iss2	mA		35	
Iss2	Sink Current ¹	mA		70	
fIN(U)	Upper Limit of Input Frequency at PIN = +6 dBm	GHz	13.2		
fin(L)	Lower Limit of Input Frequency at PIN = +6 dBm	GHz			8.2
Pin	Input Power at f = 9 to 13 GHz	dBm	2.0		10.0
Роит	Output Power at fin = 14 GHz	dBm	-1.0	1.0	

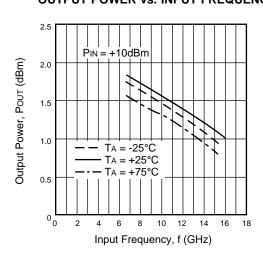

Note:

ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)

SYMBOLS	PARAMETERS	UNITS	RATINGS
VDD - VSS1	Supply Voltage	٧	5
Vss2 - Vss1	Supply Current	mA	-5
Рт	Total Power Dissipation ²	W	1.5
Pin	Input Power Level	dBm	13
Tc	CaseTemperature	°C	-65 to +125
Тѕтс	Storage Temperature	°C	-65 to +175

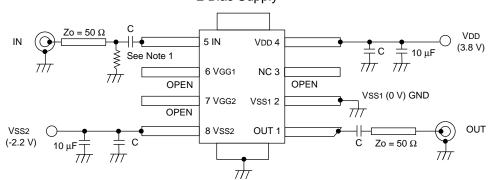

Notes:

- 1. Operation in excess of any one of these conditions may result in permanent damage.
- 2. Tc ≤ 125°C.



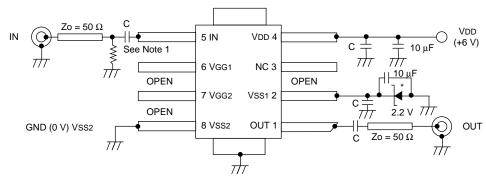
TYPICAL PERFORMANCE CURVES (TA = 25°C)

SSB PHASE NOISE vs. OFFSET FROM CARRIER $f_{IN} = 12.7 \text{ GHz}$


OUTPUT POWER vs. INPUT FREQUENCY

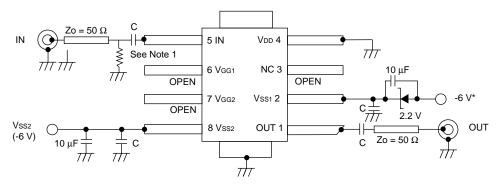
^{1.} Current is positive into the IDD pin and returns through the ISS1 and ISS2 pins.

TEST CIRCUITS


CONFIGURATION 1 2 Bias Supply

VDD = 3.8 V VSS1 = 0 V (GND) VSS2 = -2.2 V

C: 1000 - 5000 pF Chip Capacitor


CONFIGURATION 2 Single Positive Bias Supply

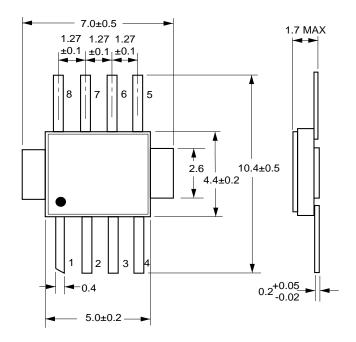
VDD = +6.0 V VSS2 = 0 V (GND) C: 1000 - 5000 pF Chip Capacitor

* VSS1 should be connected to GND through a 2.2 V Zener Diode (RD2.2FB or IN3394).

CONFIGURATION 3 Single Negative Bias Supply

VDD = 0 V (GND) VSS2 = -6 V C: 1000 - 5000 pF Chip Capacitor

* For Vss1, the bias voltage of -6.0 should be applied through a 2.2 V Zener Diode (RD2.2FB or IN3394).


Notes:

- 1. Because of the high internal gain and gain compression of the UPG506B, the device is prone to self-oscillation in the absence of an RF input signal. This self-oscillation can be suppressed by either of the following means:
 - Add a shunt resistor to the RF input line. Typically a resistor value between 50 and 1000 ohms will suppress the selfoscillation (see the test circuit schematic).
 - Apply a negative voltage through a 1000 ohm resistor to the normally open Vgg1 connection. Typically voltages between 0 and -9 volts will suppress the self-oscillation.

Both of these approaches will reduce the input sensitivity of the device (by as much as 3 dB for a 50 ohm shunt resistor), but otherwise have no effect on the reliability or electrical characteristics of the device.

OUTLINE DIMENSIONS (Units in mm)

UPG506B PACKAGE OUTLINE BF08

LEAD CONNECTIONS

1. OUTPUT 5. INPUT
2. VSS1 6. VGG1
3. NC* 7. VGG2
4. VDD 8. VSS2

^{*} No Connection