Typical Applications

- UHF Digital and Analog Receivers
- Digital Communication Systems
- Spread-Spectrum Communication Systems
- Commercial and Consumer Systems
- Portable Battery-Powered Equipment
- General Purpose Frequency Conversion

Product Description

The RF2411 is a monolithic integrated UHF receiver front-end. The IC contains all of the required components to implement the RF functions of the receiver except for the passive filtering and LO generation. It contains an LNA (low-noise amplifier), a second RF amplifier, and a balanced mixer which can drive a single-ended or balanced load. The output of the LNA is made available as a pin to permit the insertion of a bandpass filter between the LNA and the RF/Mixer section. The LNA output is buffered to permit a wide range of choices for the interstage filter without altering the VSWR or noise figure at the LNA input and to provide high isolation from the LO to the input port. The LNA section may be disabled to conserve power.

Optimum Technology Matching ${ }^{\circledR}$ A pplied

\square Si BJT	\square GaAs HBT	\square GaAs MESFET
\square Si Bi-CMOS	\square SiGe HBT	\square Si CMOS

Functional Block Diagram

Package Style: SOIC-14

Features

- Single 3V to 6.5V Power Supply
- 500 MHz to 1900 MHz Operation
- 25dB Small Signal Gain
- 2.5 dB Cascaded Noise Figure
- 8.5 mA DC Current Consumption
- -8dBm Input IP_{3}

Ordering Information	
RF2411	Low Noise Amplifier/Mixer
RF2411 PCBA-L	Fully Assembled Evaluation Board (850 MHz)
RF2411 PCBA-H	Fully Assembled Evaluation Board (1800MHz)

RF2411

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to 7.0	$\mathrm{~V}_{\mathrm{DC}}$
Input LO and RF Levels	+6	$\mathrm{dBm}^{\circ} \mathrm{Co}$
Ambient Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

RF2411

Parameter (1800 MHz)	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall					$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{RF}=1800 \mathrm{MHz}$, $\mathrm{LO}=0 \mathrm{dBm}, \mathrm{IF}=50 \mathrm{MHz}$, Application Schematic 2 configuration
RF Frequency Range		500 to 1900		MHz	
IF Frequency Range		DC to 100		MHz	
Cascade Gain		22		dB	$\mathrm{IF}=10 \mathrm{MHz}$
		21			$\mathrm{IF}=50 \mathrm{MHz}$
		17			$\mathrm{IF}=150 \mathrm{MHz}$
Cascade IP3		-7		dBm	Referenced to the input
Cascade Noise Figure		4.0		dB	Single sideband, $\mathrm{IF}=10 \mathrm{MHz}$
		4.0			Single sideband, $\mathrm{IF}=50 \mathrm{MHz}$
		4.8			Single sideband, IF=150MHz
First Section (LNA)					
Noise Figure		2.6		dB	
Input VSWR		1.2:1			
Input IP3		-3.5		dBm	
Gain		10		dB	
Reverse Isolation		25		dB	
Output VSWR		1.5:1			
Second Section (RF Amp,					
Mixer, IF1)					
Noise Figure		10.0		dB	Single Sideband
Input VSWR		2.0:1			
Input IP3		+3		dBm	
Conversion Gain		11		dB	
Output Impedance		4		$\mathrm{k} \Omega$	Open Collector
LO Input					
LO Level		-6 to +6		dBm	
LO to RF Rejection		30		dB	
LO to IF Rejection		30		dB	
LO Input VSWR		1.2:1			

RF2411

Pin	Function	Description	Interface Schematic
1	LNA IN	This pin is NOT internally DC-blocked. An external blocking capacitor must be provided if the pin is connected to a device with a DC path. A value of 100 pF is recommended for 900 MHz and 22 pF for 1800 MHz .	
2	GND	Ground connection. For best performance, keep traces physically short and connect immediately to ground plane.	
3	GND	Same as pin 2.	
4	GND	Same as pin 2.	
5	GND	Same as pin 2.	
6	IF OUT+	Balanced open collector output of the mixer. External bias needs to be supplied to this pin. This can be done with a resistor to V_{CC} (see application schematic, " 1800 MHz , Balanced Resistor Output Matching"), with a balun (see application schematic, " 1800 MHz , Output Matching with Balun") or when used in a single-ended configuration (see application schematic, " 1800 MHz , Single-Ended Resistive Output Matching"). When using a resistor to V_{CC} the resistor value will set the output impedance. Typical values for this resistor are 200Ω to $1 \mathrm{k} \Omega$. A shunt inductor/capacitor resonator to V_{CC} is needed to maintain proper DC voltage at the mixer. At low resistor values the resonator may be omitted at the expense of gain, output power and IP3. To obtain maximum gain and output power a balun as shown in application schematics " 1800 MHz , Output Matching with Balun" and " 850 MHz , Output Matching with Balun" is recommended. Using both outputs and matching them correctly to a single ended load will result in a 6 dB gain improvement over the plain single ended configuration.	
7	IF OUT-	Same as pin 6 except complementary output.	See pin 6.
8	LO IN	50Ω mixer LO input. This pin has an internal pull-up resistor to V_{CC} and is not DC-blocked. An external blocking capacitor must be provided if the pin is connected to a device with a DC path. A value of 100 pF is recommended for 900 MHz and 22 pF for 1800 MHz .	
9	RF IN+	Balanced mixer RF Input port. This pin is NOT internally DC-blocked. An external blocking capacitor must be provided if the pin is connected to a device with a DC path. A value of 100 pF is recommended for 900 MHz and 22 pF for 1800 MHz . Matching is required; see the applications schematics. To minimize the noise figure it is recommended to have a bandpass filter before this input. This will prevent noise at the image frequency from being converted to the IF.	
10	RF IN-	Same as pin 9 except complementary input.	See pin 9.
11	VCC2	Supply voltage for the mixer bias circuits.	
12	VCC1	Supply Voltage for the LNA only. A 47pF external bypass capacitor is required and an optional $0.01 \mu \mathrm{~F}$ will be required if no other low frequency bypass capacitors are nearby. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	

Pin	Function	Description	Interface Schematic
$\mathbf{1 3}$	NC	No connection.	
$\mathbf{1 4}$	LNA OUT	50Ω output. An external DC blocking capacitor is required when this pin is connected to a DC path.	

RF2411

Application Schematic 850 MHz , Output Matching with Balun

Application Schematic 1800 MHz , Output Matching with Balun

Application Schematic 1800 MHz , Balanced Resistive Output Matching

Application Schematic 1800 MHz , Single-Ended Resistive Output Matching

RF2411

Evaluation Board Schematic Mixer Tuned for 850 MHz
 (Download Bill of Materials from www.rfmd.com.)

Evaluation Board Schematic Mixer Tuned for 1800 MHz

Evaluation Board Layout 850 MHz Board Size 2.0" x 2.0"

Evaluation Board Layout 1800 MHz
Board Size 2.0" x 2.0"

RF2411

RF2411

IF Output

RF2411

8

