SIEMENS

2-GHz-Mixer

Preliminary Data

Features

- Few external components
- Low noise
- Low spurious signal content
- High conversion transconductance
- Very highly isolated RF, IF and LO ports
- Good suppression of input signals at output
- Wide range of supply voltage

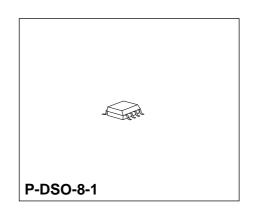
Applications

- Cellular radio mixer
- Cordless telephone mixer
- UHF transceivers
- RF data links
- HF/VHF/UHF frequency conversion

Туре	Version	Ordering Code	Package
PMB 2330	V1.1	Q67000-A6045	P-DSO-8-1 (SMD)
PMB 2330T	V1.2	Q67000-A6103	P-DSO-8-1 (SMD)

The PMB 2330 is a low power, monolithic, double balanced mixer similar to S 042 P and TBB 042 G for frequencies up to 2 GHz.

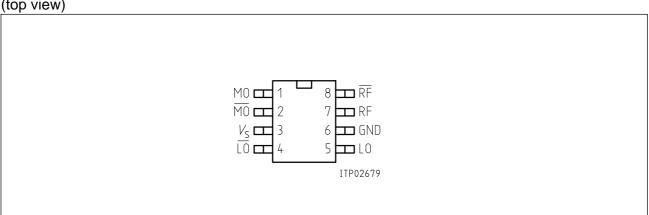
Circuit Description


The pins RF (7) and $\overline{\text{RF}}$ (8) are low resistance inputs of the base coupled difference stage.

The resistor of at least 200 Ω may be connected between pins 7 and 6 (ground) and between 8 and 6 to increase the currents (max. 4 mA per pin) and thus the conversion transductance.

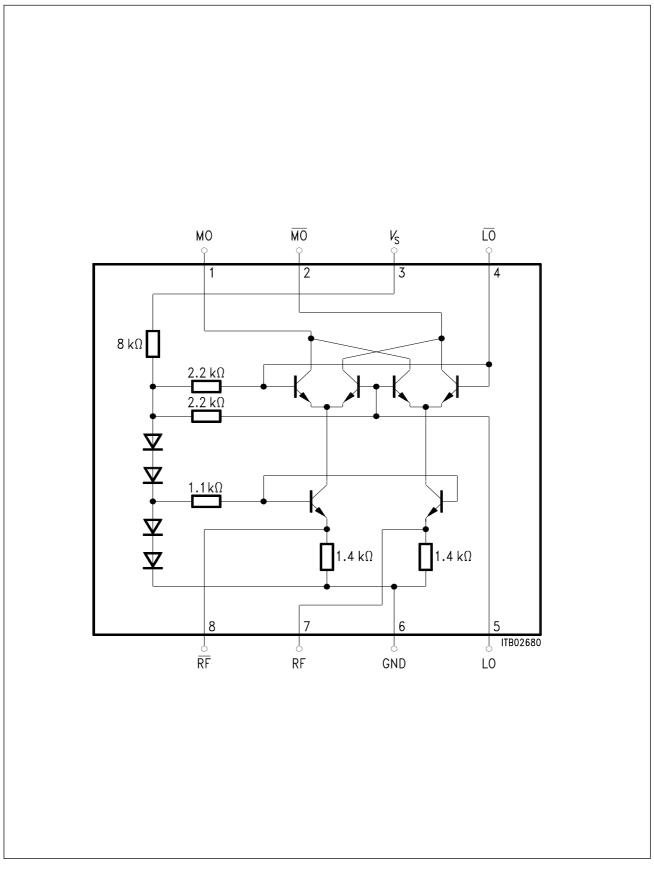
The pins \overline{LO} (4) and LO (5) are the local oscillator inputs of the mixer.

The connections to the mixer inputs may be symmetrical or asymmetrical coupled, capacitive or inductive coupled.


The mixer outputs MO (1) and $\overline{\text{MO}}$ (2) are high impedance open-collector outputs for frequencies up to 2 GHz.

Bipolar IC

Pin Configuration



Pin Definitions and Functions

Pin No.	Symbol	Function
1	MO	Mixer output
2	MO	Mixer output
3	Vs	Supply voltage
4	LO	Oscillator input
5	LO	Oscillator input
6	GND	Ground
7	RF	Mixer input
8	RF	Mixer input

SIEMENS

Block Diagram

Electrical Characteristics

Absolute Maximum Ratings

 $T_{\rm A}$ = - 40 to 85 °C

Parameter	Symbol	Limit Values		Unit	Remarks	
		min.	typ.			
Supply voltage	Vs	0	8	V		
Mixer output	V _{1,2}	1	8	V	open collector	
Oscillator input	$V_{4,5}$	0	2.5	V		
Mixer input	V _{7,8}	0.8	3.5	V		
Junction temperature	Tj		150	°C		
Storage temperature	$T_{\rm stg}$	- 40	125	°C		
Thermal resistance	$R_{ m th\ SA}$		185	K/W		

All pins have no additional internal ESD protection circuitry

Operational Range

Within the operational range the IC operates as described in the circuit description.

Supply voltage	Vs	3	7	V	
Input frequency range	f_1	10	2000	MHz	
Ambient temperature in operation	T _A	- 40	85	°C	

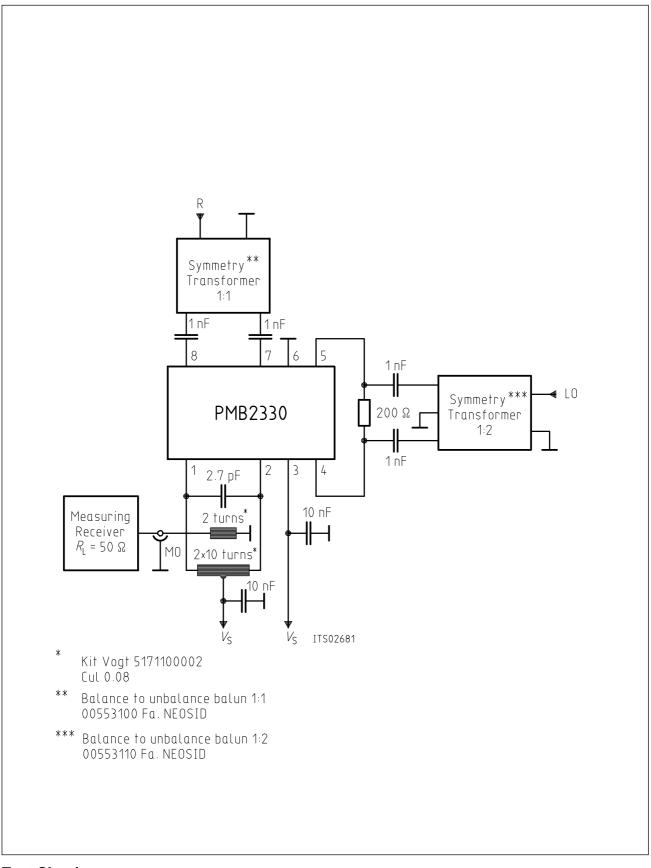
Characteristics

 $V_{\rm S}$ = 5 V ± 10 %; $T_{\rm A}$ = 25 °C

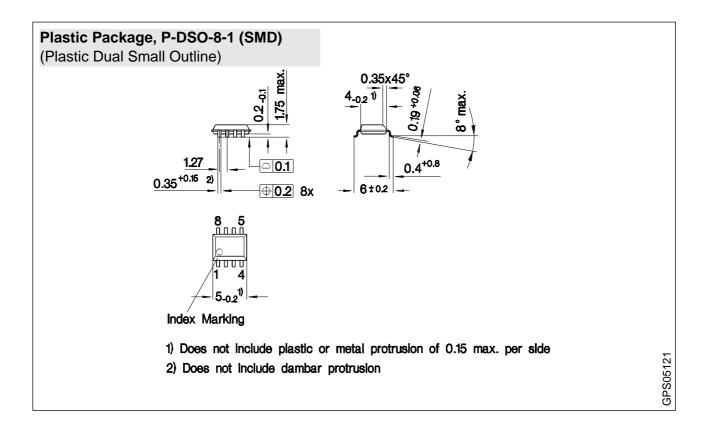
Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Current consumption	$I_{\rm MO} + I_{\overline{\rm MO}} + I_{\rm VS}$		1.6		mA	
Output current	$I_{\rm MO} = I_{\overline{\rm MO}}$		0.54		mA	
Output current difference	$ I_{\rm MO} - I_{\overline{\rm MO}} $			60	μA	
Break down voltage	$V_{\rm MO, \ \overline{MO}}$		13		V	$I_{\text{MO, }\overline{\text{MO}}} = 8 \text{ mA}$

Signal Input RF/RF

Input resistance	R _{RF}		100		Ω	
Input inductance	L_{RF}		10		nH	in series to $R_{\rm RF}$
Input level	P _{RF}			0	dBm	
Input Intercept point	P _{IPI}		- 5		dBm	referred to input
Input frequency	f_{RF}	0		2.0	GHz	
Noise figure f_{RF} = 100 MHz, f_{LO} = 145 MHz f_{RF} = 1 GHz, f_{LO} = 1.045 GHz	N N		6 8		dB dB	according to test circuit


Local Oscillator Input LO/LO

Input resistance	$egin{array}{c} R_{ m LO\ diff} \ R_{ m LO\ diff} \end{array}$		3.8 0.6		kΩ kΩ	f_{LO} = 100 MHz f_{LO} = 1 GHz
Input capacitance	$C_{ m LO~diff}$		1.5		pF	parallel to $R_{\text{LO diff}}$
Input level	P _{LO} P _{LO}	- 10 - 5		10 10	dBm dBm	f_{LO} = 100 MHz f_{LO} = 1 GHz
Input frequency	flo			2.0	GHz	


Mixer Output MO/MO

Output resistance	R _{MO diff}	7.0		kΩ	$f_{\rm MO}$ = 100 MHz
	$R_{ m MO~diff}$	0.6		kΩ	$f_{\rm MO}$ = 1 GHz
Output capacitance	$C_{\rm MO~diff}$	1.5		pF	parallel to $R_{MO diff}$
Power gain					
$f_{\rm RF}$ = 100 MHz, $f_{\rm LO}$ = 145 MHz	V_{P}	10		dB	
$f_{\rm RF}$ = 1 GHz, $f_{\rm LO}$ = 1.045 GHz	V_{P}	10		dB	
Intermediate frequency	f_{IF}		2.0	GHz	

SIEMENS

Test Circuit

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information" SMD = Surface Mounted Device

Dimensions in mm