

• Low-loss IF filter for mobile telephone

• Channel selection in GSM, PCN, PCS systems

## **SAW Components** Low Loss Filter

• Ceramic SMD package

• Very small size

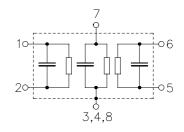
Gold-plated Ni

## Data Sheet

Features

Terminals

# B4839 282,00 MHz


#### Ceramic package QCC8C

2.08 0 888 Z 888 2x1,27=2,545,0  $\bigcirc$ ŝ

## Dimensions in mm, approx. weight 0,10 g

### Pin configuration

| 1,2   | Input, balanced  |
|-------|------------------|
| 5,6   | Output, balanced |
| 7     | External coil    |
| 3,4,8 | To be grounded   |



| Туре  | Ordering code     | Marking and Package according to | Packing<br>according to |
|-------|-------------------|----------------------------------|-------------------------|
| B4839 | B39281-B4839-U310 | C61157-A7-A56                    | F61074-V8070-Z000       |

Electrostatic Sensitive Device (ESD)

#### **Maximum ratings**

| Operable temperature range | Т                | -20 / +75 | °C  |
|----------------------------|------------------|-----------|-----|
| Storage temperature range  | T <sub>stg</sub> | -35 / +85 | °C  |
| DC voltage                 | V <sub>DC</sub>  | 0         | V   |
| Source power               | $P_{\rm s}^{}$   | 10        | dBm |

Preliminary format of data sheet Terms of delivery and rights to change design reserved. Page 1 of 4



**S+M** Siemens Matsushita Components

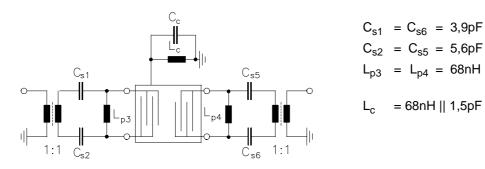
# SAW Components Low Loss Filter

### Data Sheet

#### **Characteristics**

| Operating temperature:        |
|-------------------------------|
| Terminating source impedance: |
| Terminating load impedance:   |

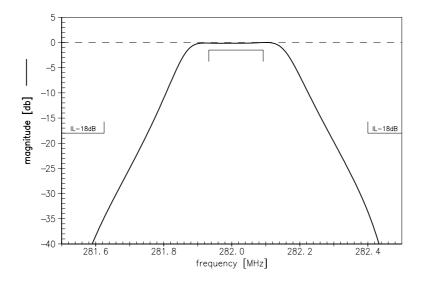
| Т       | = -20 to +75°C      |
|---------|---------------------|
| $Z_{S}$ | = 1000 Ω    -1,1 pF |
| $Z_{L}$ | = 1000 Ω    -1,1 pF |
|         |                     |

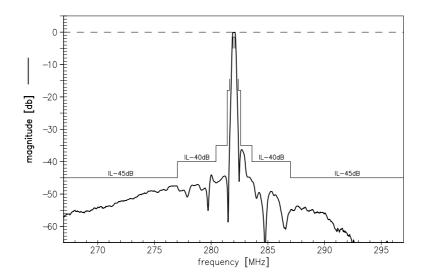

|                                                                    |                       | min. | typ.        | max. |         |
|--------------------------------------------------------------------|-----------------------|------|-------------|------|---------|
| Nominal frequency                                                  | f <sub>N</sub>        |      | 282,00      |      | MHz     |
| Minimum insertion attenuation                                      |                       | 4,0  | 5,2         | 6,0  | dB      |
| (Including losses in baluns and matching network)                  |                       |      |             |      |         |
| Amplitude ripple (p-p)                                             | $\Delta \alpha$       |      |             |      |         |
| <i>f</i> <sub>N</sub> - 67,5 kHz <i>f</i> <sub>N</sub> + 67,5 kHz  |                       | —    | 0,3         | 1,5  | dB      |
| Group delay ripple (p-p)                                           | $\Delta \tau$         |      |             |      |         |
| f <sub>N</sub> - 80,0 kHz f <sub>N</sub> + 80,0 kHz                |                       |      | 0,8         | 1,8  | μs      |
| <b>Relative attenuation</b> (relative to $\alpha_{min}$ )          | $\alpha_{rel}$        |      |             |      |         |
| <i>f</i> <sub>N</sub> - 20,00 MHz <i>f</i> <sub>N</sub> - 5,00 MHz |                       | 45   | 47          | —    | dB      |
| <i>f</i> <sub>N</sub> - 5,00 MHz <i>f</i> <sub>N</sub> - 1,60 MHz  |                       | 40   | 47          | —    | dB      |
| <i>f</i> <sub>N</sub> - 1,60 MHz <i>f</i> <sub>N</sub> - 0,80 MHz  |                       | 35   | 45          | —    | dB      |
| <i>f</i> <sub>N</sub> - 0,80 MHz <i>f</i> <sub>N</sub> - 0,60 MHz  |                       | 35   | 45          | —    | dB      |
| f <sub>N</sub> - 0,60 MHz f <sub>N</sub> - 0,40 MHz                |                       | 18   | 38          | —    | dB      |
| <i>f</i> <sub>N</sub> + 0,40 MHz <i>f</i> <sub>N</sub> + 0,60 MHz  |                       | 18   | 29          | _    | dB      |
| <i>f</i> <sub>N</sub> + 0,60 MHz <i>f</i> <sub>N</sub> + 0,80 MHz  |                       | 35   | 37          | —    | dB      |
| <i>f</i> <sub>N</sub> + 0,80 MHz <i>f</i> <sub>N</sub> + 1,60 MHz  |                       | 35   | 39          | —    | dB      |
| <i>f</i> <sub>N</sub> + 1,60 MHz <i>f</i> <sub>N</sub> + 5,00 MHz  |                       | 40   | 50          | —    | dB      |
| $f_{\rm N}$ + 5,00 MHz $f_{\rm N}$ + 20,00 MHz                     |                       | 45   | 53          |      | dB      |
| Impedance within the passband                                      |                       |      |             |      |         |
| Input: $Z_{IN} = R_{IN}    C_{IN}$                                 |                       | —    | 1000    1,1 | —    | Ω    pF |
| Output: $Z_{OUT} = R_{OUT}    C_{OUT}$                             |                       | —    | 1000    1,1 | —    | Ω    pF |
| Temperature coefficient of frequency 1)                            | TC <sub>f</sub>       | —    | 0,031       |      | ppm/k   |
| Frequency inversion point                                          | <i>T</i> <sub>0</sub> | —    | 25          | —    | °C      |

<sup>1)</sup> Temperature dependence of  $f_c$ :  $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$ 



Data Sheet


Test matching network to 50  $\Omega$  (element values depend on PCB layout):






Data Sheet

Transfer function (normalized)





Preliminary format of data sheet Terms of delivery and rights to change design reserved. Page 4 of 4

OFW EM EU May 5, 1999