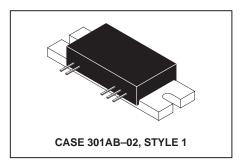
The RF Line **UHF Silicon FET Power Amplifier**

Designed specifically for the European Digital Extended Group Special Mobile (GSM) Base Station applications in the 925–960 MHz frequency range. MHW910 operates from a 24 volt supply and requires 17 dBm of RF input power. It includes a micropower voltage regulator in the biasing circuit. This allows MHW910 to operate from any bias voltage between 8 and 28 volts.


Specified 24 Volt Characteristics:
 RF Input Power — 17 dBm Maximum
 RF Output Power — 10 W @ 1 dB Compression Point
 Minimum Gain — 23 dB

Harmonics — -35 dBc Maximum @ 2 fo

• 50Ω Input/Output System

MHW910

10 W 925 – 960 MHz RF POWER AMPLIFIER

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	٧s	28	Vdc
DC Bias Voltage	V _B	28	Vdc
RF Input Power	Pin	21	dBm
RF Output Power	Pout	30	W
Operating Case Temperature Range	TC	-40 to +95	°C
Storage Temperature Range	T _{stg}	-40 to +100	°C

ELECTRICAL CHARACTERISTICS ($V_{S1} = V_{S2} = 24 \text{ Vdc}$, $V_{bias} = 8 \text{ to } 28 \text{ Vdc}$, $T_C = 25^{\circ}\text{C}$, 50 Ω system, unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Frequency Range	BW	925	<u> </u>	960	MHz
Total Quiescent Current (Pin = 0 mW)	IQ	-	160	-	mA
Power Gain (P _{out} = 10 W) ⁽¹⁾	GP	23	_	-	dB
Output Power at 1 dB Compression	P1dB	10	_	-	W
Efficiency (P _{out} = 10 W)	η	35	40	-	%
Input VSWR (Pout = 10 W)	VSWR _{in}	-	_	2:1	-
Harmonics ($P_{\text{out}} = 10 \text{ W}$) $2f_{\text{O}}$ $3f_{\text{O}}$	H2 H3	- -		-35 -45	dBc dBc
Ripple (P _{out} = 10 W)	_	-	_	2	dB
Power Gain Variation (P _{OUt} = 1 mW to 10 W)	_	-	-	2	dB
Load Mismatch Stress (P _{Out} = 10 W; Load VSWR 3:1, All Phase Angles)	Ψ	No Degradation in Output Power			
Stability (P _{OUt} = 10 mW to 10 W; Load VSWR 3:1; All Phase Angles; T _C = -40°C to +95°C)	-	All Spurious Outputs More Than 70 dB Below Desired Signal			

⁽¹⁾ Adjust P_{in} for specified P_{out} .

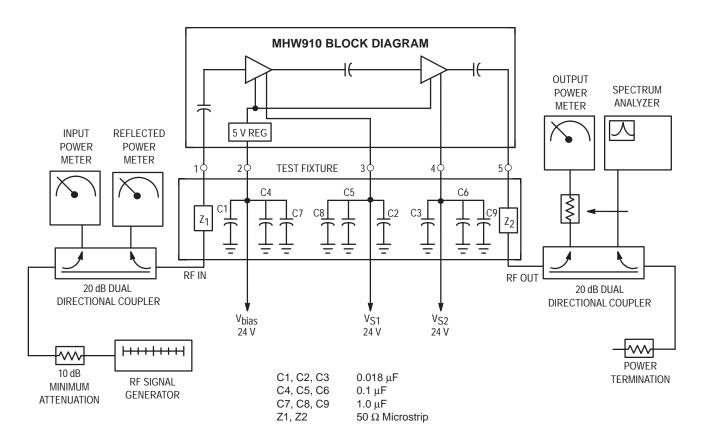


Figure 1. MHW910 Test Circuit Diagram

TYPICAL CHARACTERISTICS

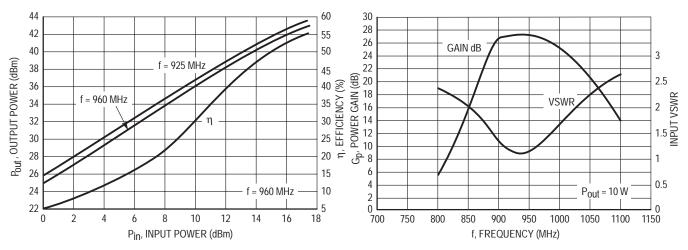


Figure 2. Output Power versus Input Power

Figure 3. Power Gain versus Frequency

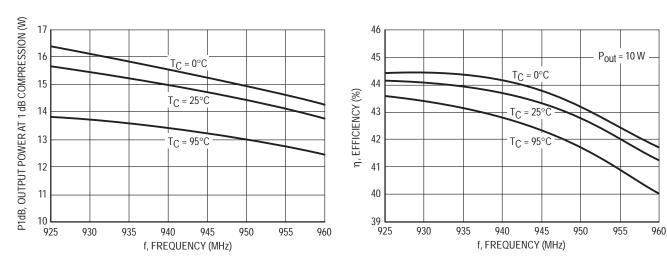


Figure 4. P1dB versus Temperature

Figure 5. Efficiency versus Temperature

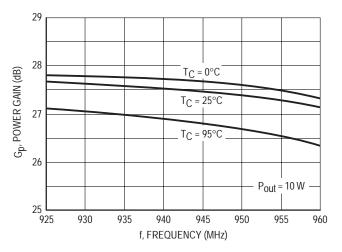
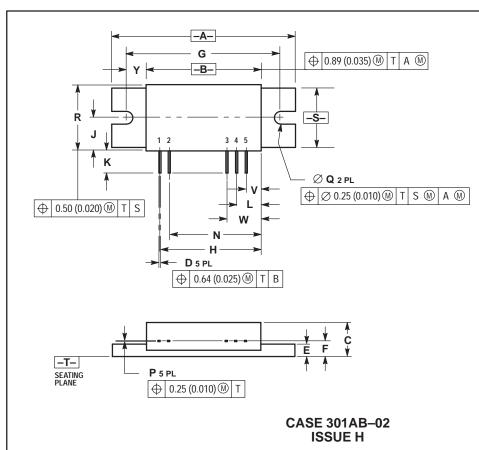



Figure 6. Power Gain versus Temperature

PACKAGE DIMENSIONS

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION F TO CENTER OF LEADS
- REF INDICATES NON-CONTROLLED DIMENSION FOR REFERENCE USE ONLY.

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	1.890	1.910	48.01	48.51		
В	1.170	1.190	29.72	30.23		
С	0.350	0.376	8.89	9.55		
D	0.018	0.022	0.46	0.56		
E	0.120	0.135	3.05	3.43		
F	0.165 BSC		4.19 BSC			
G	1.600 BSC		40.64 BSC			
Н	1.055	1.055 BSC		26.80 BSC		
J	0.336	0.360	8.53	9.14		
K	0.225		5.72			
L	0.255 BSC		6.48 BSC			
N	0.955 BSC		24.26 BSC			
Р	0.008	0.012	0.20	0.31		
Q	0.151	0.161	3.84	4.09		
R	0.685	0.705	17.40	17.91		
S	0.598	0.612	15.19	15.55		
V	0.155 BSC		3.94 BSC			
W	0.355	0.355 BSC		BSC		
Υ	0.210 REF		5.33 REF			

STYLE 1:

PIN 1. RF INPUT

2. +DC (BIAS) 3. +DC (SUPPLY) 4. +DC (SUPPLY)

CASE: GROUND

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609 - US & Canada ONLY 1-800-774-1848 Motorola Fax Back System - http://sps.motorola.com/mfax/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

HOME PAGE: http://motorola.com/sps/

MHW910/D