VHF AMPLIFIER MODULE A broadband VHF amplifier module primarily designed for use in portable transmitters operating from 9.6 V electrical battery supply. The module is a two-stage RF amplifier consisting of n-channel FETs, with lumped-element matching and bias circuits. The module will produce a minimum of 5 W into a 50 Ω load over the frequency range of 148 to 174 MHz. #### QUICK REFERENCE DATA | Mode of operation | | | CW | |-------------------------|---------------------|------|----------------| | Frequency range | | | 148 to 174 MHz | | DC supply voltages | V_{S1}, V_{S2} | nom. | 9.6 V | | Drive power | P_{D} | max. | 35 mW | | Load power | PL | > | 5.0 W | | Input, output impedance | z _i , z∟ | nom. | 50 Ω | #### **MECHANICAL DATA** Dimensions in mm Fig. 1 SOT-182. Flange = Earth ## **RATINGS** Limiting values in accordance with the Absolute Maximum System (IEC 134) | DC supply terminal voltages* | V_{S1}, V_{S2} | max. | 13.5 | V | |--------------------------------|------------------|------|--------------|----| | RF input terminal voltage* | ±V _i | max. | 25 | V | | RF output terminal voltage* | ±V _o | max. | 25 | ٧ | | Load power (see Fig. 2) | PL | max. | 9.0 | W | | Drive power | PD | max. | 70 | mW | | Storage temperature range | T _{stg} | | -40 to + 100 | οС | | Operating heatsink temperature | Th | max. | 90 | οС | Fig. 2 Load power derating; VSWR = 1 : 1. ^{*} With respect to earth. #### **CHARACTERISTICS** T_h = 25 °C unless otherwise stated V_{S1} = V_{S2} = 9.6 V; R_S = R_L = 50 $\Omega;$ f = 148 to 174 MHz. | Quiescent currents first stage current | | | | | |---|------------------------------|------|----------|----| | P _D = 0
second stage current with | I _{Q1} | typ. | 125 m/ | Ą | | first stage open circuit PD = 0; IS1 = 0 | I _{Q2} | < | 0.5 m/ | Δ | | 2 0, | ٠۵2 | | 0.0 1117 | • | | RF drive power | B - | < | 35 m\ | A/ | | $P_L = 5.0 W$ | P_{D} | | 35 111 | ,, | | Efficiency | | > | 40 % | | | P _L = 5.0 W | η | typ. | 46 % | | | Harmonic output | any harmonic
(relative to | | | _ | | | carrier) | < | 35 dB | į | | Input VSWR | | | | | | with respect to 50 Ω | VSWR | max. | 2:1 | | ### Stability The module is stable with load VSWR up to 8 (all phases) when operated within the following conditions: $V_{S1} \le V_{S2}$ = 4 to 11.2 V; f = 148 to 174 MHz; P_D = 17 to 70 mW; P_L < 9 W (matched). #### Ruggedness The module will withstand a load VSWR of 50 for short period overload conditions, with P_D, V_{S1} and V_{S2} at maximum values, providing the combination does not result in the matched RF output power derating curve being exceeded ($T_h < 90$ °C). #### Mounting To ensure good thermal transfer the module should be mounted onto a heatsink with a flat surface and heat-conducting compound applied between module and heatsink. The module is designed to be pressed against the heatsink by a sheet spring applying up to 50 N to the top surface of the module encapsulation. The leads of the devices may be soldered directly into a circuit using a soldering iron with a maximum temperature of 245 °C for not more than 10 s at a distance of at least 1 mm from the plastic. #### Power rating In general it is recommended that the output power from the module under nominal conditions should not exceed 7 W in order to provide an adequate safety margin under fault conditions. #### Gain control The module is designed to be operated at a constant output power of 5 W. The module is adjusted to produce nominal output power by reducing the first stage supply voltage (V_{S1}). If the module is to be used over a range of output power levels below 5 W the first stage supply voltage should not be reduced below 4 V. If further reductions in power are needed this may be achieved by varying the drive power (P_D), however for stable operation care must be taken to avoid operating the module outside the published stability conditions. Fig. 3 Power gain as a function of temperature; $V_{S1} = V_{S2} = 9.6 \text{ V}$; $P_D = 35 \text{ mW}$; f = 161 MHz. Fig. 4 Load power and efficiency as functions of drive power; $V_{S1} = V_{S2} = 9.6 \text{ V}$; typical values. Fig. 5 Load power as a function of supply voltage V_{S1} ; P_D = 35 mW; V_{S2} = 9.6 V; typical values. Fig. 6 Load power and efficiency as functions of frequency; $V_{S1} = V_{S2}$; $P_D = 35$ mW; typical values. Fig. 7 Second and third harmonic distortion as a function of frequency; V_{S1} = V_{S2} = 9.6 V; P_D = 35 mW; typical values.