VHF AMPLIFIER MODULE

A broadband VHF amplifier module primarily designed for use in portable transmitters operating from 9.6 V electrical battery supply.

The module is a two-stage RF amplifier consisting of n-channel FETs, with lumped-element matching and bias circuits.

The module will produce a minimum of 5 W into a 50 Ω load over the frequency range of 148 to 174 MHz.

QUICK REFERENCE DATA

Mode of operation			CW
Frequency range			148 to 174 MHz
DC supply voltages	V_{S1}, V_{S2}	nom.	9.6 V
Drive power	P_{D}	max.	35 mW
Load power	PL	>	5.0 W
Input, output impedance	z _i , z∟	nom.	50 Ω

MECHANICAL DATA

Dimensions in mm

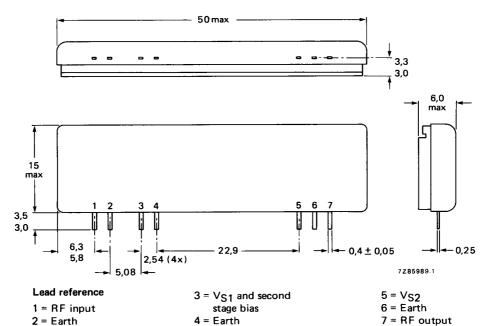


Fig. 1 SOT-182.

Flange = Earth

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

DC supply terminal voltages*	V_{S1}, V_{S2}	max.	13.5	V
RF input terminal voltage*	±V _i	max.	25	V
RF output terminal voltage*	±V _o	max.	25	٧
Load power (see Fig. 2)	PL	max.	9.0	W
Drive power	PD	max.	70	mW
Storage temperature range	T _{stg}		-40 to + 100	οС
Operating heatsink temperature	Th	max.	90	οС

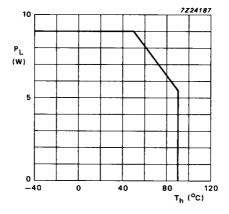


Fig. 2 Load power derating; VSWR = 1 : 1.

^{*} With respect to earth.

CHARACTERISTICS

 T_h = 25 °C unless otherwise stated V_{S1} = V_{S2} = 9.6 V; R_S = R_L = 50 $\Omega;$ f = 148 to 174 MHz.

Quiescent currents first stage current				
P _D = 0 second stage current with	I _{Q1}	typ.	125 m/	Ą
first stage open circuit PD = 0; IS1 = 0	I _{Q2}	<	0.5 m/	Δ
2 0,	٠۵2		0.0 1117	•
RF drive power	B -	<	35 m\	A/
$P_L = 5.0 W$	P_{D}		35 111	,,
Efficiency		>	40 %	
P _L = 5.0 W	η	typ.	46 %	
Harmonic output	any harmonic (relative to			_
	carrier)	<	35 dB	į
Input VSWR				
with respect to 50 Ω	VSWR	max.	2:1	

Stability

The module is stable with load VSWR up to 8 (all phases) when operated within the following conditions:

 $V_{S1} \le V_{S2}$ = 4 to 11.2 V; f = 148 to 174 MHz; P_D = 17 to 70 mW; P_L < 9 W (matched).

Ruggedness

The module will withstand a load VSWR of 50 for short period overload conditions, with P_D, V_{S1} and V_{S2} at maximum values, providing the combination does not result in the matched RF output power derating curve being exceeded ($T_h < 90$ °C).

Mounting

To ensure good thermal transfer the module should be mounted onto a heatsink with a flat surface and heat-conducting compound applied between module and heatsink. The module is designed to be pressed against the heatsink by a sheet spring applying up to 50 N to the top surface of the module encapsulation. The leads of the devices may be soldered directly into a circuit using a soldering iron with a maximum temperature of 245 °C for not more than 10 s at a distance of at least 1 mm from the plastic.

Power rating

In general it is recommended that the output power from the module under nominal conditions should not exceed 7 W in order to provide an adequate safety margin under fault conditions.

Gain control

The module is designed to be operated at a constant output power of 5 W. The module is adjusted to produce nominal output power by reducing the first stage supply voltage (V_{S1}). If the module is to be used over a range of output power levels below 5 W the first stage supply voltage should not be reduced below 4 V. If further reductions in power are needed this may be achieved by varying the drive power (P_D), however for stable operation care must be taken to avoid operating the module outside the published stability conditions.

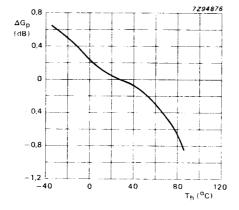


Fig. 3 Power gain as a function of temperature; $V_{S1} = V_{S2} = 9.6 \text{ V}$; $P_D = 35 \text{ mW}$; f = 161 MHz.

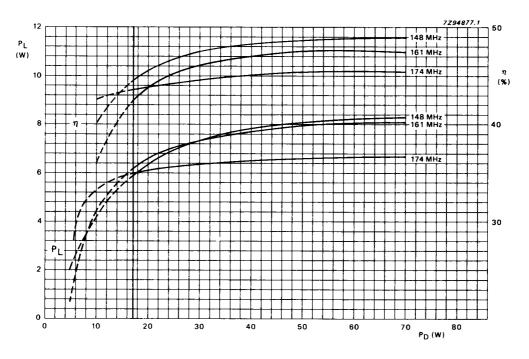


Fig. 4 Load power and efficiency as functions of drive power; $V_{S1} = V_{S2} = 9.6 \text{ V}$; typical values.

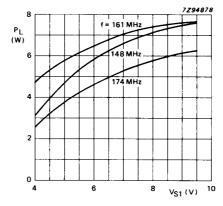


Fig. 5 Load power as a function of supply voltage V_{S1} ; P_D = 35 mW; V_{S2} = 9.6 V; typical values.

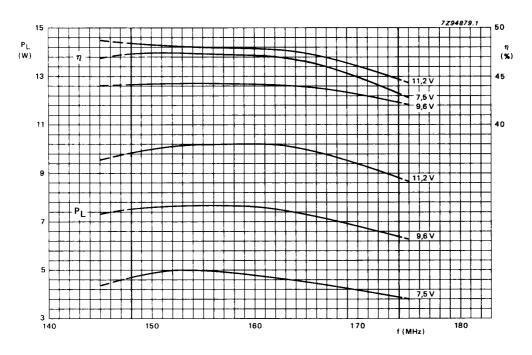


Fig. 6 Load power and efficiency as functions of frequency; $V_{S1} = V_{S2}$; $P_D = 35$ mW; typical values.

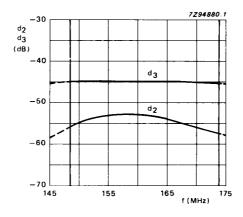


Fig. 7 Second and third harmonic distortion as a function of frequency; V_{S1} = V_{S2} = 9.6 V; P_D = 35 mW; typical values.