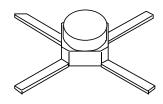


Cascadable Silicon Bipolar MMIC Amplifiers

Technical Data

MSA-0735, -0736

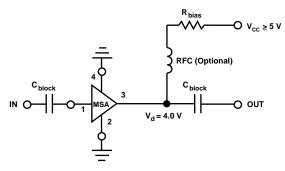
Features


- Cascadable 50 Ω Gain Block
- Low Operating Voltage: 4.0 V Typical V_d
- **3 dB Bandwidth:** DC to 2.4 GHz
- 13.0 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Cost Effective Ceramic Microstrip Package

Description

The MSA-0735 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a cost effective, microstrip package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using HP's 10 GHz f_T, 25 GHz f_{MAX}, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


35 micro-X Package^[1]

Note:

1. Short leaded 36 package available upon request.

Typical Biasing Configuration

MSA-0735, -0736 Absolute Maximum Ratings

Absolute Maximum ^[1]		
60 mA		
275 mW		
+13dBm		
200°C		
-65 to 200°C		

Thermal Resistance^[2,5]:

 $\theta_{jc} = 155^{\circ}C/W$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25^{\circ}C.$
- 3. Derate at 6.5 mW/°C for $T_C > 157$ °C.
- 4. Storage above $+150^{\circ}$ C may tarnish the leads of this package making it difficult to solder into a circuit.
- 5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASURE-MENTS section "Thermal Resistance" for more information.

Symbol	Parameters and Test Conditions: I_{d} = 22 mA, Z_{0} = 50 Ω			Min.	Тур.	Max.		
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB	12.5	13.5	14.5		
ΔG_P	Gain Flatness	f = 0.1 to 1.3 GHz	dB		± 0.6	± 1.0		
f3 dB	3 dB Bandwidth		GHz		2.4			
VSWR	Input VSWR	f = 0.1 to 2.5 GHz			2.0:1			
VSWA	Output VSWR	f = 0.1 to 2.5 GHz			1.8:1			
NF	50Ω Noise Figure	f = 1.0 GHz	dB		4.5			
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		5.5			
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		19.0			
tD	Group Delay	f = 1.0 GHz	psec		140			
Vd	Device Voltage		V	3.6	4.0	4.4		
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-7.0			

Electrical Specifications^[1], $T_A = 25^{\circ}C$

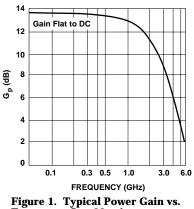
Note:

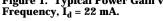
1. The recommended operating current range for this device is 15 to 40 mA. Typical performance as a function of current is on the following page.

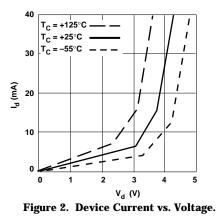
Part Number Ordering Information

Part Number	No. of Devices	Container
MSA-0735	10	Strip
MSA-0736-BLK	100	Antistatic Bag
MSA-0736-TR1	1000	7" Reel

For more information, see "Tape and Reel Packaging for Semiconductor Devices".


 S_{21} **S**₁₁ S₁₂ S_{22} Freq. GHz Mag dB Mag dB Mag Mag Ang Ang Ang Ang -7-3 4.71 $\mathbf{2}$ 0.1 .13 13.5175-19.0.112 .29 0.2 -6 4.69 170 -18.5.119 3 .29 -12.13 13.4160 -18.66 .29 -24 0.4 .14 -1313.4 4.68 .118 -20 13.3 4.64 150 -18.4.120 7.28 -35 0.6 .16 .28 0.8 -29 13.24.60 140 -18.1.1258 -47 .19 .27 .21 -4012.9 129 -17.6.131 10 -58 1.0 4.42 .27 1.5-7112.24.07104 -16.5.149 10 .24 -83 -15.62.0 .32 -10711.53.74 79 .165 7.19 -103.37 2.5-13410.3 3.26 62 -15.3.173 5.15 -1138.8 0 3.0 .43 -1602.7644 -15.4.171 .14 -1207.5 27 3.5 .47 -1792.37-15.3.173 -4 .16 -120.49 167 6.2 2.0512 -15.2.168 -6 .21 -1214.0 .28 5.0.51 134 4.0 1.59-15-15.2.173 -11-1356.0 .60 96 2.11.27-42 -14.6.185 .29 -167-16


MSA-0735, -0736 Typical Scattering Parameters (Z_0 = 50 $\Omega,$ T_A = 25 °C, I_d = 22 mA)


A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

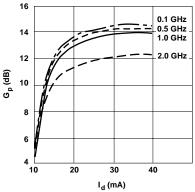


Figure 3. Power Gain vs. Current.

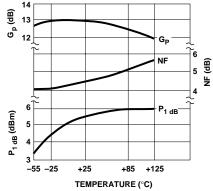


Figure 4. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz, $I_d=22mA$.

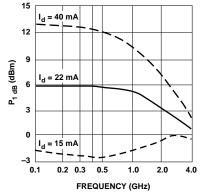


Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

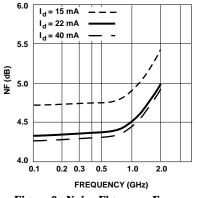
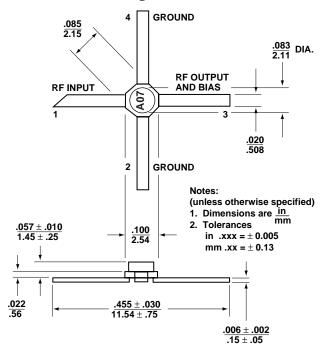



Figure 6. Noise Figure vs. Frequency.

35 micro-X Package Dimensions