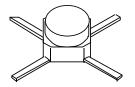


0.5-12 GHz General Purpose Gallium Arsenide FET

Technical Data

ATF-10736

Features


- **High Associated Gain:** 13.0 dBTypical at 4 GHz
- **Low Bias:** $V_{DS} = 2 V, I_{DS} = 25 \text{ mA}$
- **High Output Power:** 20.0 dBm typical P _{1 dB} at 4 GHz
- Low Noise Figure: 1.2 dB Typical at 4 GHz
- Cost Effective Ceramic Microstrip Package
- Tape-and-Reel Packaging Option Available [1]

Description

The ATF-10736 is a high performance gallium arsenide Schottky-barrier-gate field effect transistor housed in a cost effective microstrip package. Its noise figure makes this device appropriate for use in the gain stages of low noise amplifiers operating in the 0.5-12 GHz frequency range.

This GaAs FET device has a nominal 0.3 micron gate length using airbridge interconcnects between drain fingers. Total gate periphery is 500 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

36 micro-X Package

Electrical Specifications, $T_A = 25$ °C

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
NF_{O}	Optimum Noise Figure: $V_{DS} = 2 \text{ V}$, $I_{DS} = 25 \text{ mA}$	f = 2.0 GHz	dB		0.9	
Ü		f = 4.0 GHz	dB		1.2	1.4
		f = 6.0 GHz	dB		1.4	
G_{A}	Gain @ NFo; $V_{DS} = 2 V$, $I_{DS} = 25 \text{ mA}$	f = 2.0 GHz	dB		16.5	
		f = 4.0 GHz	dB	12.0	13.0	
		f = 6.0 GHz	dB		10.5	
$P_{1 dB}$	Power Output @ 1 dB Gain Compression	f = 4.0 GHz	dBm		20.0	
	$V_{\mathrm{DS}} = 4\mathrm{V}, I_{\mathrm{DS}} = 70\mathrm{mA}$					
$G_{1 dB}$	$1~\mathrm{dB}$ Compressed Gain: $\mathrm{V_{DS}} = 4~\mathrm{V}, \mathrm{I_{DS}} = 70~\mathrm{mA}$	f = 4.0 GHz	dB		12.0	
$g_{\rm m}$	Transconductance: $V_{DS} = 2 V$, $V_{GS} = 0 V$		mmho	70	140	
I_{DSS}	Saturated Drain Current: $V_{DS} = 2 V$, $V_{GS} = 0 V$		mA	70	130	180
$V_{\rm P}$	Pinchoff Voltage: $V_{DS} = 2 \text{ V}$, $I_{DS} = 1 \text{ mA}$		V	-4.0	-1.3	-0.5

Note:

1. Refer to PACKAGING section, "Tape-and-Reel Packaging for Surface Mount Semiconductors."

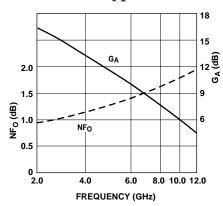
5-29 5965-8698E

ATF-10736 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
$ m V_{DS}$	Drain-Source Voltage	V	+5
V_{GS}	Gate-Source Voltage	V	-4
$V_{ m GD}$	Gate-Drain Voltage	V	-7
I_{DS}	Drain Current	mA	I_{DSS}
P_{T}	Total Power Dissipation [2,3]	mW	430
T_{CH}	Channel Temperature	°C	175
T_{STG}	Storage Temperature ^[4]	°C	-65 to +175

Thermal Resistance:	$\theta_{\rm jc} = 350$ °C/W; $T_{\rm CH} = 150$ °C
Liquid Crystal Measurement:	1μm Spot Size ^[5]

Part Number Ordering Information


Part Number	Devices Per Reel	Reel Size		
ATF-10736-TR1	1000	7"		
ATF-10736-STR	10	STRIP		

For more information, see "Tape and Reel Packaging for Semiconductor Devices."

ATF-10736 Noise Parameters: $V_{DS} = 2 V$, $I_{DS} = 25 \text{ mA}$

Freq.	NFo	Γ_{c}	D /50	
GHz	dB	Mag	Ang	$R_N/50$
1.0	0.8	0.88	41	0.52
2.0	0.9	0.75	85	0.27
4.0	1.2	0.48	159	0.08
6.0	1.4	0.46	-122	0.08
8.0	1.7	0.53	-71	0.43

ATF-10736 Typical Performance, $T_A = 25^{\circ}C$

 $\label{eq:Figure 1} Figure \ 1. \ Optimum \ Noise \ Figure \ and \\ Associated \ Gain \ vs. \ Frequency. \\ V_{DS} = 2V, \ I_{DS} = 25 \ mA, \ T_A = 25^{\circ}C.$

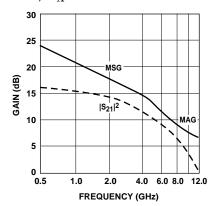


Figure 2. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. $V_{DS}=2\ V,\ I_{DS}=25\ mA.$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE\ TEMPERATURE} = 25$ °C.
- 3. Derate at 2.9 mW/°C for $T_{CASE} > 25$ °C.
- 4. Storage above +150°C may tarnish the leads of this package difficult to solder into a circuit. After a device has been soldered into a circuit, it may be safely stored up to 175°C.
- 5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section for more information.

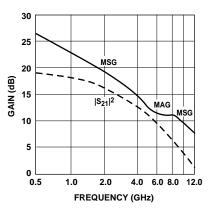
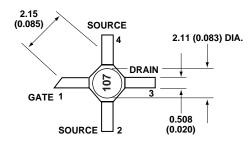
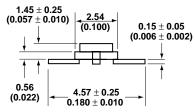


Figure 3. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. V_{DS} = 4 V, I_{DS} = 70 mA.

 $\textbf{Typical Scattering Parameters,} \ Common \ Source, \ Z_O = 50 \ \Omega, T_A = 25 ^{\circ}\!C, V_{DS} = 2 \ V, I_{DS} = 25 \ mA$


Freq.	S	\mathbf{S}_{11}		\mathbf{S}_{21}		$\mathbf{S_{12}}$		S	22	
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.5	.96	-20	15.4	5.90	162	-32.4	.024	77	.50	-10
1.0	.92	-4 0	15.2	5.77	144	-26.7	.046	66	.48	-21
2.0	.77	-76	13.8	4.92	109	-21.3	.086	52	.39	-34
3.0	.59	-107	12.5	4.20	83	-20.0	.111	40	.33	- 45
4.0	.49	-136	11.2	3.64	57	-17.3	.137	24	.26	- 61
5.0	.43	-179	10.0	3.15	32	-15.5	.167	9	.14	- 65
6.0	.49	138	8.6	2.74	8	-14.9	.179	- 5	.05	22
7.0	.57	106	7.3	2.32	-13	-14.8	.183	-18	.19	60
8.0	.68	81	5.6	1.92	-32	-14.7	.185	-33	.33	57
9.0	.73	62	4.2	1.62	-50	-14.8	.183	-4 0	.42	46
10.0	.77	47	3.0	1.41	-66	-14.8	.182	- 52	.46	38
11.0	.82	36	1.0	1.12	-81	-14.6	.186	-67	.50	27
12.0	.85	22	-0.2	0.98	-97	-14.5	.189	-75	.51	15


 $\textbf{Typical Scattering Parameters,} \ Common \ Emitter, \ Z_O = 50 \ \Omega, T_A = 25 ^{\circ}\text{C}, V_{DS} = 4 \ V, I_{DS} = 70 \text{mA}$

Freq.	S	\mathbf{S}_{11}		$\mathbf{S_{21}}$		$\mathbf{S_{12}}$		S	22	
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.5	.90	-32	19.0	8.95	147	-34.9	.018	77	.40	-7
1.0	.79	-53	18.0	7.96	128	-28.6	.037	70	.38	-17
2.0	.57	-96	15.5	5.99	90	-22.5	.075	56	.34	-38
3.0	.43	-129	13.3	4.60	64	-19.5	.106	43	.31	-50
4.0	.36	-163	11.6	3.78	39	-17.3	.136	31	.28	-51
5.0	.35	156	10.1	3.21	16	-15.6	.166	14	.22	- 45
6.0	.47	110	8.8	2.76	-11	-14.5	.189	- 5	.15	-4
7.0	.65	78	7.0	2.23	-36	-14.2	.196	- 23	.28	35
8.0	.77	58	5.1	1.80	-56	-14.1	.198	-38	.42	37
9.0	.83	44	3.5	1.50	-7 2	-14.2	.195	-48	.51	33
10.0	.86	30	2.4	1.32	-88	-14.5	.188	- 64	.55	26
11.0	.87	16	1.1	1.13	-106	-14.8	.182	-77	.60	18
12.0	.91	1	0.1	0.99	-123	-15.3	.171	- 91	.65	7

A model for this device is available in the DEVICE MODELS section.

36 micro-X Package Dimensions

- 1. Dimensions are in millimeters (inches)
 2. Tolerances: in .xxx = ± 0.005
 mm .xx = ± 0.13