## THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS

# FREQUENCY SYNTHESISER (MICROPROCESSOR INTERFACE) WITH RESETTABLE COUNTERS 

The NJ8821 is a synthesiser circuit fabricated on the GPS CMOS process and is capable of achieving high sideband attenuation and low noise performance. It contains a reference oscillator, 11-bit programmable reference divider, digital and sample-and-hold comparators, 10-bit programmable 'M' counter, 7 -bit programmable ' A ' counter and the necessary control and latch circuitry for accepting and latching the input data.

Data is presented as eight 4-bit words under external control from a suitable microprocessor..

It is intended to be used in conjunction with a two-modulus prescaler such as the SP8710 series to produce a universal binary coded synthesiser.

The NJ8821 is available in Plastic DIL (DP) and Miniature Plastic DIL (MP) packages, both with operating temperature range of $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The NJ8821MA is available only in Ceramic DIL package with operating temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FEATURES

- Low Power Consumption
- Microprocessor Compatible
$\square$ High Performance Sample and Hold Phase Detector
- $>10 \mathrm{MHz}$ Input Frequency

ORDERING INFORMATION
NJ8821 BA DP Plastic DIL Package
NJ8821 BA MP Miniature Plastic DIL Package
NJ8821 MA DG Ceramic DIL Package


Fig. 1 Pin connections - top view

## ABSOLUTE MAXIMUM RATINGS

Supply voltage, $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$
-0.5 V to 7 V
Input voltage
Open drain output, pin 3
All other pins
Storage temperature
Storage temperature

20, MP20

ELECTRICAL CHARACTERISTICS AT $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
Test conditions unless otherwise stated:
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V} \pm 0 \cdot 5 \mathrm{~V}$. Temperature range NJ8821 BA: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; NJ8821MA: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

## DC Characteristics

| Characteristic | Value |  |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min. | Typ. | Max. |  |  |
| Supply current OUTPUT LEVELS |  | $\begin{aligned} & 3.5 \\ & 0.7 \end{aligned}$ | $\begin{aligned} & 5.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ | $\left.\begin{array}{l}\mathrm{f}_{\text {osc }}, \mathrm{f}_{\text {Fin }}=10 \mathrm{MHz} \\ \mathrm{f}_{\text {osc }}, \mathrm{f}_{\text {FIN }}=1.0 \mathrm{MHz}\end{array}\right\} \begin{aligned} & 0 \text { to } 5 \mathrm{~V} \\ & \begin{array}{l}\text { square } \\ \text { wave }\end{array}\end{aligned}$ |
| Modulus Control Output (MC) |  |  |  |  |  |
| High level | $4 \cdot 6$ |  |  | V | $\mathrm{I}_{\text {SOURCE }}=1 \mathrm{~mA}$ |
| Low level |  |  | $0 \cdot 4$ | V | $\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$ |
| Lock Detect Output (드) Low level |  |  | 0.4 7 | V | $\mathrm{I}_{\text {SINK }}=4 \mathrm{~mA}$ |
| PDB Output |  |  |  |  |  |
| High level | $4 \cdot 6$ |  |  | V | $\mathrm{I}_{\text {SOURCE }}=5 \mathrm{~mA}$ |
| Low level |  |  | $0 \cdot 4$ | V | $\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$ |
| 3 -state leakage current |  |  | $\pm 0 \cdot 1$ | $\mu \mathrm{A}$ |  |
| INPUT LEVELS |  |  |  |  |  |
| Data Inputs (D0-D3) |  |  |  |  |  |
| High level | $4 \cdot 25$ |  |  | V | TTL compatible |
| Low level |  |  | $0 \cdot 4$ | V | See note 1 |
| Program Enable Input (PE) |  |  |  |  |  |
| High level | $4 \cdot 25$ |  |  | V |  |
| Low level |  |  | 0.75 | V |  |
| Data Select Inputs (DS0-DS2) |  |  |  |  |  |
| High level | $4 \cdot 25$ |  |  | V |  |
| Low level |  |  | 0.75 | V |  |

## AC Characteristics

| Characteristic | Value |  |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min. | Typ. | Max. |  |  |
| $\mathrm{F}_{\text {IN }}$ and $\overline{\text { OSC IN }}$ input level | 200 |  |  | mVRMS | $10 \mathrm{MHz} \mathrm{AC-coupled} \mathrm{sinewave}$ |
| Max. operating frequency, $\mathrm{f}_{\text {FIN }}$ and $\mathrm{f}_{\text {osc }}$ | $10 \cdot 6$ |  |  | MHz | Input squarewave $\mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{\mathrm{SS}}$, See note 4. |
| Propagation delay, clock to $\overline{\mathrm{MC}}$ |  | 30 | 50 | ns | See note 2. |
| Strobe pulse width, $\mathrm{t}_{\text {W(ST) }}$ | 2 |  |  | $\mu \mathrm{s}$ |  |
| Data set-up time, $\mathrm{t}_{\mathrm{DS}}$ | 1 |  |  | $\mu \mathrm{s}$ |  |
| Data hold time, $\mathrm{t}_{\text {DH }}$ | 1 |  |  | $\mu \mathrm{s}$ | See Fig. 6 |
| Latch address set-up time, $\mathrm{t}_{\text {SE }}$ | 1 |  |  | $\mu \mathrm{S}$ |  |
| Latch address hold time, $\mathrm{t}_{\text {HE }}$ | 1 |  |  | $\mu \mathrm{s}$ |  |
| Digital phase detector propagation delay |  | 500 |  | ns |  |
| Gain programming resistor, RB | 5 |  |  | $\mathrm{k} \Omega$ | See note 3. |
| Hold capacitor, CH |  |  | 1 | nF |  |
| Output resistance, PDA |  |  | 5 | k $\Omega$ |  |
| Digital phase detector gain |  | 0.4 |  | V/Rad |  |

NOTES

1. Data inputs have internal pull-up resistors to enable them to be driven from TTL outputs.
2. All counters have outputs directly synchronous with their respective clock rising edges.
3. The finite output resistance of the internal voltage follower and 'on' resistance of the sample switch driving this pin will add a finite time constant to the loop. An external 1 nF hold capacitor will give a maximum time constant of $5 \mu \mathrm{~s}$, typically.
4. Operation at up to 15 MHz is possible with a full logic swing but is not guaranteed.

PIN DESCRIPTIONS

| Pin no. | Name | Description |
| :---: | :---: | :---: |
| 1 | PDA | Analog output from the sample and hold phase comparator for use as a 'fine' error signal. Output at $\left(V_{D D}-V_{S S}\right) / 2$ when the system is in lock. Voltage increases as $f_{v}$ phase lead increases; voltage decreases as $f_{r}$ phase lead increases. Output is linear over only a narrow phase window, determined by gain (programmed by RB). |
| 2 | PDB | Three-state output from the phase/frequency detector for use as a 'coarse' error signal. $f_{v}>f_{r}$ or $f_{v}$ leading: positive pulses with respect to the bias point $V_{\text {BIAS }}$ $\mathrm{f}_{\mathrm{V}}<\mathrm{f}_{\mathrm{r}}$ or $\mathrm{f}_{\mathrm{r}}$ leading: negative pulses with respect to the bias point $\mathrm{V}_{\text {BIAS }}$ $f_{v}=f_{r}$ and phase error within PDA window: high impedance. |
| 3 | $\overline{\text { LD }}$ | An open-drain lock detect output at low level when phase error is within PDA window (in lock); high impedance at all other times. |
| 4 | $\mathrm{F}_{\text {IN }}$ | The input to the main counters, normally driven from a prescaler, which may be AC-coupled or, when a full logic swing is available, may be DC-coupled. |
| 5 | $\mathrm{V}_{S S}$ | Negative supply (ground). |
| 6 | $V_{D D}$ | Positive supply. |
| 7, 8 | $\begin{aligned} & \text { OSC IN/ } \\ & \text { OSC OUT } \end{aligned}$ | These pins form an on-chip reference oscillator when a series resonant crystal is connected across them. Capacitors of appropriate value are also required between each end of the crystal and ground to provide the necessary additional phase shift. An external reference signal may, alternatively, be applied to OSC IN. This may be a low-level signal, AC-coupled, or if a full logic swing is available it may be DC-coupled. The program range of the reference counter is 3 to 2047, with the division ratio being twice the programmed number. |
| 9,10, 11, 12 | D0-D3 | Data on these inputs is transferred to the internal data latches during the appropriate data read time slot. D3 is MSB, D0 is LSB. |
| 13 | NC | No connection |
| 14 | PE | This pin is used as a strobe for the data. A logic ' 1 ' on this pin transfers data from the D0-D3 pins to the internal latch addressed by the data select (DSO-DS2) pins. A logic ' 0 ' disables the data inputs. |
| 15, 16, 17 | DS0-DS2 | Data select inputs for addressing the internal data latches |
| 18 | $\overline{\mathrm{MC}}$ | Modulus control outputfor controlling an external dual-modulus prescaler. $\overline{M C}$ will be low at the beginning of a count cycle and will remain low until the 'A' counter completes its cycle. MC then goes high and remains high until the ' $M$ ' counter completes its cycle, at which point both ' $A$ ' and ' $M$ ' counters are reset. This gives a total division ratio of $M P+A$, where $P$ and $P+1$ represent the dual-modulus prescaler values. The program range of the ' $A$ ' counter is 0-127 and therefore can control prescalers with a division ratio up to and including $\div 128 / 129$. The programming range of the ' $M$ ' counter is $8-1023$ and, for correct operation, $M \geqslant A$. Where every possible channel is required, the minimum total division ratio should be $P^{2}-P$. |
| 19 | RB | An external sample and hold phase comparator gain programming resistor should be connected between this pin and $\mathrm{V}_{\mathrm{SS}}$. |
| 20 | CH | An external hold capacitor should be connected between this pin and $\mathrm{V}_{\text {SS }}$. |



Fig. 3 Typical supply current v. input frequency


Fig. 4 Typical supply current v. input level, $\overline{\text { OSC IN }}$

## NJ8821

## PROGRAMMING

Timing is generated externally, normally from a microprocessor, and allows the user to change the data in selected latches as defined by the data map Fig.5. The PE pin is used as a strobe for the data: taking PE high causes data to be transferred from the data pins (D0-D3) into the addressed latch. Following the falling edge of PE, the data is retained in the addressed latch and the data inputs are disabled. Data transfer from all internal latches into the counters occurs simultaneously with the transfer of data into latch 1, which would therefore normally be the last latch addressed during each channel change. Timing information for this mode of operation is given in Fig. 6.

When re-programming, a reset to zero state is followed by reloading with the new counter values. This means that the synthesiser loop lock-up time is well defined and less than

10 ms . If shorter lock-up times are are required when making only small changes in frequency, the GPS NJ8823 (with nonresettable counters) should be considered.

| WORD | DS2 | DS1 | DS0 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | M1 | M0 | - | - |
| 2 | 0 | 0 | 1 | M5 | M4 | M3 | M2 |
| 3 | 0 | 1 | 0 | M9 | M8 | M7 | M6 |
| 4 | 0 | 1 | 1 | A3 | A2 | A1 | A0 |
| 5 | 1 | 0 | 0 | - | A6 | A5 | A4 |
| 6 | 1 | 0 | 1 | R3 | R2 | R1 | R0 |
| 7 | 1 | 1 | 0 | R7 | R6 | R5 | R4 |
| 8 | 1 | 1 | 1 | - | R10 | R9 | R8 |

Fig. 5 Data map


Fig. 6 Timing diagram

## PHASE COMPARATORS

The digital phase/frequency detector drives a three-state output, PDB, which provides a 'coarse' error signal to enable fast switching between channels. The PDB output is active until the phase error is within the sample and hold phase detector, PDA, window, when PDB becomes high impedance. Phase-lock is indicated at this point by a low level on $\overline{\mathrm{LD}}$. The sample and hold phase detector provides a 'fine' error signal to give further phase adjustment and to hold the loop in lock.

An internally generated ramp, controlled by the digital output from both the reference and main divider chains, is sampled at the reference frequency to give the 'fine' error signal, PDA. When in phase lock, this output would be typically at $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) / 2$ and any offset from this would be proportional to phase error. The relationship between this offset and the
phase error is the phase comparator gain, which is programmable with an external resistor, RB. An internal 50pF capacitor is used in the sample and hold comparator.

## CRYSTAL OSCILLATOR

When using the internal oscillator, the stability may be enhanced at high frequencies by the inclusion of a resistor between pin 8 (OSC OUT) and the other components. A value of $150-270 \Omega$ is advised

## PROGRAMMING/POWER UP

Data and signal input pins should not have input applied to them prior to the application of $\mathrm{V}_{\mathrm{DD}}$, as otherwise latch-up may occur.

HEADQUARTERS OPERATIONS
GEC PLESSEY SEMICONDUCTORS
Cheney Manor, Swindon,
Wiltshire SN2 2QW, United Kingdom.
Tel: (0793) 518000
Fax: (0793) 518411

## GEC PLESSEY SEMICONDUCTORS

P.O. Box 660017

1500 Green Hills Road,
Scotts Valley, California 95067-0017,
United States of America.
Tel: (408) 4382900
Fax: (408) 4385576

## CUSTOMER SERVICE CENTRES

- FRANCE \& BENELUX Les Ulis Cedex Tel: (1) 64462345 Fax : (1) 64460607
- GERMANY Munich Tel: (089) 3609 06-0 Fax : (089) 3609 06-55
- ITALY Milan Tel: (02) 66040867 Fax: (02) 66040993
- JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
- NORTH AMERICA Scotts Valley, USA Tel (408) 4382900 Fax: (408) 4387023.
- SOUTH EAST ASIA Singapore Tel: (65) 3827708 Fax: (65) 3828872
- SWEDEN Stockholm, Tel: 4687029770 Fax: 4686404736
- TAIWAN, ROC Taipei Tel: 8862 5461260. Fax: 886271900260
- UK, EIRE, DENMARK, FINLAND \& NORWAY

Swindon Tel: (0793) 518510 Fax : (0793) 518582
These are supported by Agents and Distributors in major countries world-wide.
© GEC Plessey Semiconductors 1992

