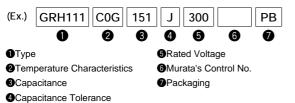


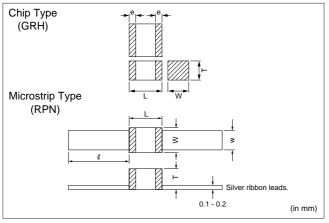
MONOLITHIC CERAMIC CAPACITOR

Solder Coated Type GRH/RPN100 Series ; HiQ and High-power Type

■FEATURES


- 1. The dielectric is composed of low dielectric loss ceramics. This series is perfectly suited to high-frequency applications (VHF-microwave band).
- 2. The series is ultraminiature, yet has a high-power capacity. This is the best capacitor available for transmitter and amplifier circuits such as those in broadcasting equipment and mobile base stations.
- 3. GRH110 type is designed for both flow and reflow soldering and GRH111 type is designed for reflow soldering.
- GRH type capacitors exhibit better solderability and lower solder leaching because of its nickel barriered terminations.
- 5. RPN type capacitors withstand high temperatures because ribbon leads are attached with silver paste.
- 6. RPN type capacitors are easily soldered and especially well suited in applications where only a soldering iron can be used.

■APPLICATION


High-frequency and high-power circuits

■PART NUMBERING

(*Please specify the part number when ordering)

1TYPE AND DIMENSIONS

Туре		Dimensio	ns (mm)	
туре	L	W	Т	е
GRH110	1.4 +0.6	1.4 +0.6	0.8 to 1.65	0.25+0.25
GRH111	2.8 +0.6	2.8 +0.6	2.0 to 2.8	0.4 +0.4

Туре	Dimensions (mm)				
Type	L	W	Т	l	w
RPN110	1.6±0.4	1.4±0.4	1.6 max.	5.0 min.	1.3 ±0.4
RPN111	3.2±0.4	2.8±0.4	3.0 max.	9.0±2.0	2.35±0.15

@TEMPERATURE CHARACTERISTICS

Code	Temp. Coeff.	Temp. Range	Reference Temp.
C0G	0±30ppm/℃	-55℃ to +125℃	25℃

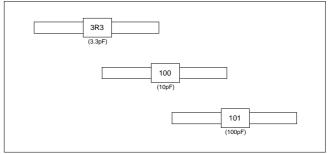
GCAPACITANCE (Ex.)

Code	Capacitance (pF)	Code	Capacitance (pF)
010	1	220	22
1R5	1.5	471	470

4CAPACITANCE TOLERANCE

Code	С	D	J
Cap. tolerance	±0.25pF	±0.5pF	±5%
Applied	C≦5pF	5pF <c≦10pf< td=""><td>10pF<c< td=""></c<></td></c≦10pf<>	10pF <c< td=""></c<>

GRATED VOLTAGE


Code	DC Rated voltage (V)
50	50
100	100
200	200
300	300
500	500

PACKAGING CODE

Code	Packaging
PB	Bulk packaging in a bag
PT	Tape carrier packaging (for only GRH type)

MARKING

Marking is omitted from the GRH110, GRH111 and RPN110. The three digit code is marked on the RPN111 series.

■CAPACITANCE RANGE TABLE

T. C. Type	COG						
			GRH111/RPN111				
oup: (p:)	50		500	300	200	100	50
0.5 0.6 0.7							
0.7							
0.8 0.9 1.0							
1.1							
1. 1 1. 2 1. 3							
1.4 1.5 1.6							
1.6							
1.7 1.8 1.9							
2.0							
2.0 2.1 2.2							
2. 4 2. 7 3. 0							
3.0							
3. 3 3. 6 3. 9							
4. 3							
4. 3 4. 7 5. 1							
5.6 6.2 6.8 7.5 8.2 9.1							
6.8							
8.2							
10							
11 12							
13 15							
16							
20							
24							
27 30							
33 36							
39							
43 47 51							
56							
62 68							
$\begin{array}{c} 10\\ 11\\ 12\\ 13\\ 15\\ 16\\ 20\\ 22\\ 24\\ 27\\ 30\\ 33\\ 36\\ 39\\ 43\\ 47\\ 51\\ 56\\ 62\\ 62\\ 68\\ 75\\ 82\\ 91\\ 100\\ 110\\ 120\\ 130\\ 150\\ 160\\ \end{array}$							
91							
110							
130							
160							
180 200 220 240 270 300							
220							
270							
330							
390							
430 470							
510							
620 680							
330 360 390 430 470 510 560 620 680 750 820 910 1,000							
820 910							
1,000							

■CAPACITANCE TOLERANCE

5pF and below · · · · · · · · · C : ±0.25pF
Over 5pF, 10pF and below · · · · D : ±0.5pF
More than 10pF · · · · · · · · J : ±5%

■PACKAGING TYPES/QUANTITY

Туре	Bulk (pcs./bag)	Taping (pcs./φ178mm/reel)
GRH110	1,000	2,000
GRH111	1,000	1,000
RPN110	100	-
RPN111	50	-

■SPECIFICATIONS AND TEST METHODS

Temperature Com	pensating Type
------------------------	----------------

No.	Item		Specification	Test Method
1	Operating		_55℃ to +125℃	
2	Temperature Ra Rated Voltage	ange	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p.p} or V ^{O.P} , whichever is larger, shall be maintained within the rated voltage range.
3	Appearance		No defects or abnormalities.	Visual inspection.
4	Dimensions		Within the specified dimension.	Using calipers. No failure shall be observed when 250% of the rated voltage is
5	Dielectric Stren	igth	No defects or abnormalities.	applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.
6	Insulation Resistance (I.R.) 25℃ 125℃		C≤ 470pF :1,000,000MΩ min. 470pF <c≤1,000pf 100,000mω="" :="" min.<br="">C≤ 470pF : 100,000MΩ min. 470pF<c≤1,000pf 10,000mω="" :="" min.<br="">Within the specified tolerance.</c≤1,000pf></c≤1,000pf>	The insulation resistance shall be measured with a DC voltage not exceeding the rated voltage at 25°C and 125°C standard humidity and within 2 minutes of charging.
	Capacitance			The capacitance/Q shall be measured at 25°C at the frequency and voltage shown in the table.
8	Q		$C \leq 220 pF : Q \geq 10,000$ $220 pF < C \leq 470 pF : Q \geq 5,000$ $470 pF < C \leq 1,000 pF : Q \geq 3,000$ C : Nominal Capacitance (pF)	Char. C0G (1,000pF and below) Item Frequency 1±0.1MHz Voltage 0.5 to 5Vr.m.s.
	Capac Variati Rate	citance ion	Within the specified tolerance. (Table A-7)	The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5, the capacitance shall be
	Tempe Coeffic Capacitance	erature cient	Within the specified tolerance. (Table A-7)	within the specified tolerance for the temperature coefficient and capacitance change as Table A-7. The capacitance drift is calculated by dividing the differences
9	Temperature Characteristics Capac Drift	Temperature Characteristics Capacitance Within ±0.2% or ±0.05pF	·	between the maximum and minimum measured values in the step 1, 3 and 5 by the cap. value in step 3. Step Temperature (°C) 1 25 ± 2 2 -55 ± 3 3 25 ± 2 4 125 ± 3 5 25 ± 2
	Adhes Streng Termir (for chi	gth of	No removal of the terminations or other defects shall occur.	Solder the capacitor to the test jig (alumina substrate) shown in Fig. 1k using solder containing 2.5% silver. The soldering shall be done either with an iron or in furnace and be conducted with care so the soldering is uniform and free of defects such as heat shock. Then apply a 10N force in the direction of the arrow.
10	Terminal Strength Tensile Streng (for mi strip ty	gth icro-	Capacitor shall not be broken or damaged.	The capacitor body is fixed and a load is applied gradually in the axial direction until its value reaches 10N (5N for RPN110).
	Bendir Streng lead w termin (for mi strip ty	ng gth of <i>v</i> ire ial icro-	Lead wire shall not be cut or broken.	Position the main body of the capacitor so the lead wire terminal is perpendicular, and load 2.5N to the lead wire terminal. Bend the main body by 90 degrees, bend back to original position, bend 90 degrees in the reverse direction, and then bend back to original position.
	Appea		No defects or abnormalities.	Solder the capacitor to the test jig (alumina substrate) shown in Fig 2k using solder containing 2.5% silver. The soldering shall be
11	Vibration Resistance	itance	Within the specified tolerance. Satisfies the initial value. $C \le 220pF : Q \ge 10,000$ $220pF < C \le 470pF : Q \ge 5,000$ $470pF < C \le 1,000pF : Q \ge 3,000$ C : Nominal Capacitance (pF)	Fig.2k using solder containing 2.5% silver. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so the soldering is uniform and free of defects such as heat shock. The capacitor shall be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).

No.C02E4.pdf 98.8.21

No.	Item		Specification	Test Method				
12	Solderability of Termination		s to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating immerse in solder containing 2.5% silver for 5±0.5 seconds at 230±5°C. The dipping depth for microstrip type capacitors is up to 1 mm from the root of the terminal. Preheat the capacitor at 80 to 100°C for 2 minutes and then at 150 to 200°C for 5 minutes. Immerse in solder containing 2.5% silver for 3±0.5 seconds at 270±5°C. Set at room temperature for 24±2 hours, then measure. The dipping depth for microstrip type capacitors is up to 2mm from the root of the terminal.				
13	Resistance to Soldering Heat	specifications in the follow Item Appearance Capacitance Change Q I.R. Dielectric Strength	SpecificationNo marked defectWithin $\pm 2.5\%$ or $\pm 0.25pF$ (Whichever is larger)C≤ 220pF : Q≥10,000220pF <c≤ 470pf="" 5,000<="" :="" q≥="" td="">470pF<c≤1,000pf 3,000<="" :="" q≥="" td="">More than 30% of the initial specification value at 25°C.No failureC : Nominal Capacitance (pF)</c≤1,000pf></c≤>					
14	Temperature Cycle	The measured and obs specifications in the follow Item Appearance Capacitance Change Q I.R. Dielectric Strength	served characteristics shall satisfy the wing table. Specification No marked defect Within $\pm 1\%$ or $\pm 0.25pF$ (Whichever is larger) C $\leq 220pF : Q \geq 10,000$ $220pF < C \leq 470pF : Q \geq 5,000$ $470pF < C \leq 1,000pF : Q \geq 3,000$ More than 30% of the initial specification value at 25°C. No failure C : Nominal Capacitance (pF)	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table. Then, repeat twice the successive cycles of immersion, each cycle consisting of immersion in a fresh water at 65 $^{+5}_{-5}$ °C for 15 minutes and immersion in a saturated uqueous solution of salt at 0±3° cor 15 minutes. The cpapcitor is promptly washed with running water, dried with a dry cloth, and allowed to sit at room temperature for 24±2 hours. Step 1 2 3 4 Temp. (°C) -55 $^{+5}_{-3}$ Room Temp. +125 $^{+3}_{-3}$ Room Temp. Time (min.) 30±3 2 to 3 30±3 2 to 3				
15	Humidity	The measured and obs specifications in the follow Item Appearance Capacitance Change Q I.R.	served characteristics shall satisfy the	Apply the 24-hour heat (-10 to +65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Remove, set for 24±2 hours at room temperature, and measure. Humidity 80-98% 900-98% 90-9				
16	High Temperature Load	The measured and obs specifications in the follow Item Appearance Capacitance Change Q I.R.	served characteristics shall satisfy the wing table. Specification No marked defect Within $\pm 2.5\%$ or ± 0.25 pF (Whichever is larger) C ≤ 220 pF : Q $\geq 10,000$ 220pF <c<math>\leq 470pF : Q$\geq 5,000$ 470pF<c<math>\leq 1,000pF : Q$\geq 3,000$ More than 30% of the initial specification value at 25°C. C : Nominal Capacitance (pF)</c<math></c<math>	Apply 150% of the rated voltage for 2,000±12 hours at 125±3°C. Remove and set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.				

Table A-7

	Temperature Coefficient (ppm/℃) Note 1	Capacitance Change from 25°C Value (%)					
Char.		−55°C		-30°C		−10°C	
		Max.	Min.	Max.	Min.	Max.	Min.
COG	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125°C.