DISCRETE SEMICONDUCTORS

DATA SHEET

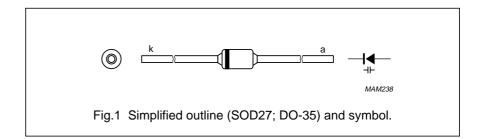
BB119Variable capacitance diode

Product specification Supersedes data of April 1992 File under Discrete Semiconductors, SC01 1996 May 03

Variable capacitance diode

BB119

FEATURES


- Hermetically sealed leaded glass SOD27 (DO-35) package
- C10: 17 pF; ratio: 1.3.

APPLICATIONS

• Automatic frequency control.

DESCRIPTION

The BB119 is a variable capacitance diode, fabricated in planar technology, and encapsulated in the hermetically sealed leaded glass SOD27 (DO-35) package.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

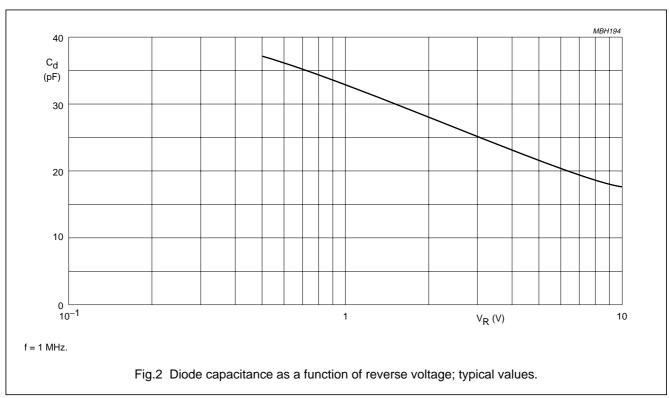
SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _R	continuous reverse voltage	_	15	V
I _F	continuous forward current	_	200	mA
T _{stg}	storage temperature	-55	+150	°C
Tj	operating junction temperature	_	150	°C

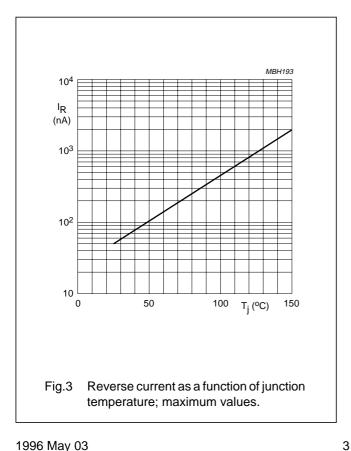
ELECTRICAL CHARACTERISTICS

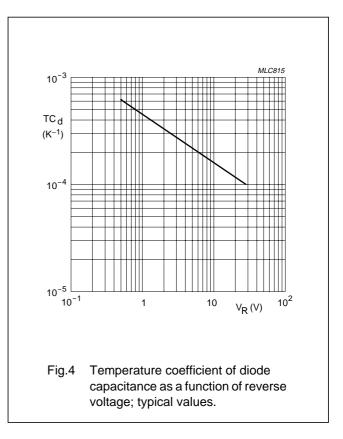
 $T_i = 25$ °C; unless otherwise specified.

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
reverse current	V _R = 15 V; see Fig.3	_	_	50	nA
	V _R = 15 V; T _j = 150 °C; see Fig.3	-	_	2	μΑ
diode series resistance	f = 200 MHz; note 1	_	0.2	1.5	Ω
diode capacitance	V _R = 4 V; f = 1 MHz; see Figs 2 and 4	20	_	25	pF
	V _R = 10 V; f = 1 MHz; see Figs 2 and 4	_	17	_	pF
capacitance ratio	f = 1 MHz	1.3	_	_	
	reverse current diode series resistance diode capacitance	reverse current $ \begin{array}{c} V_R = 15 \text{ V; see Fig.3} \\ \hline V_R = 15 \text{ V; T}_j = 150 \text{ °C; see Fig.3} \\ \hline \text{diode series resistance} \\ \hline \text{diode capacitance} \\ \hline V_R = 4 \text{ V; f} = 1 \text{ MHz; see Figs 2 and 4} \\ \hline V_R = 10 \text{ V; f} = 1 \text{ MHz; see Figs 2 and 4} \\ \hline \end{array} $	reverse current $ \begin{array}{c} V_R = 15 \text{ V}; \text{ see Fig.3} \\ V_R = 15 \text{ V}; T_j = 150 \text{ °C}; \text{ see Fig.3} \\ \end{array} $ $ \begin{array}{c} - \\ \text{diode series resistance} \end{array} $ $ \begin{array}{c} f = 200 \text{ MHz}; \text{ note 1} \\ \\ V_R = 4 \text{ V}; f = 1 \text{ MHz}; \text{ see Figs 2 and 4} \\ \hline V_R = 10 \text{ V}; f = 1 \text{ MHz}; \text{ see Figs 2 and 4} \\ \end{array} $	reverse current $\begin{array}{c} V_R = 15 \text{ V}; \text{ see Fig.3} \\ V_R = 15 \text{ V}; T_j = 150 \text{ °C}; \text{ see Fig.3} \\ \end{array} \qquad - \qquad - \\ \text{diode series resistance} \qquad f = 200 \text{ MHz}; \text{ note 1} \\ \text{diode capacitance} \qquad V_R = 4 \text{ V}; f = 1 \text{ MHz}; \text{ see Figs 2 and 4} \\ V_R = 10 \text{ V}; f = 1 \text{ MHz}; \text{ see Figs 2 and 4} \\ \end{array} \qquad - \qquad 17$	

Note

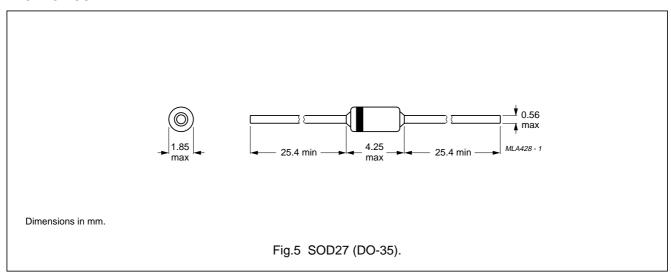

1. $V_R = 4 V$.


1996 May 03 2


Variable capacitance diode

BB119

GRAPHICAL DATA


1996 May 03

Philips Semiconductors Product specification

Variable capacitance diode

BB119

PACKAGE OUTLINE

DEFINITIONS

Data sheet status					
Objective specification	This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	This data sheet contains final product specifications.				
Limiting values					

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification

Application information

Where application information is given, it is advisory and does not form part of the specification.

is not implied. Exposure to limiting values for extended periods may affect device reliability.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

1996 May 03 4