UHF POWER AMPLIFIER MODULE

UHF broadband amplifier module designed for use in mobile communication equipment operating directly from a 9.6 V electrical supply. The module will produce a minimum of 5 W into a 50 Ω load over the frequency range 430 to 470 MHz.

The module consists of a two-stage RF amplifier using npn transistor chips with lumped element matching components in a SOT182 plastic encapsulation.

QUICK REFERENCE DATA

Mode of operation	c	continuous wave			
Frequency range	430 to 470 1			MHz	
DC supply terminal voltages	V _{S1} ; V _{S2}	nom.	9.6	V	
RF drive power	P_{D}	max.	35	mW	
RF load power	₽լ	min.	5.0	W	
Efficiency	n	min.	40	%	
Input and output impedance	z _i ; Z _l	nom.	50	Ω	

MECHANICAL DATA

See Fig.1 next page.

MECHANICAL DATA

Dimensions in mm

Lead reference

S2
arth
F output

4 = Earth

Flange connected to earth

Fig.1 SOT182.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

DC supply terminal voltages*	VS1; VS2	max.	13.5	V
RF input terminal voltage*	± Vi	max.	25	V
RF output terminal voltage*	± Vo	max.	25	V
Load power	PL	max.	9.0	w
Drive power	PD	max.	70	mW
Storage temperature range	T _{stg}	40 to	100	οС
Operating heatsink temperature	Th	max.	90	οС

^{*} With respect to the earth pins.

CHARACTERISTICS

T _h = 25 °C unless otherwise stated			
Conditions: $V_{S1} = V_{S2} = 9.6 \text{ V}$; $R_S = R_L = 50 \Omega$; $f = 430 \text{ to } 400 to$	170 MHz		
Quiescent currents			
first stage current			
$P_D = 0$	IQ1	typ.	10 mA
second stage current with			
first stage open circuit	Ι _{Ω2}	<	0.5 mA
RF drive power			
P _L = 5.0 W	P_{D}	<	35 mW
F.W. chaman			
Efficiency		min.	40 %
$P_L = 5.0 W$	η	typ.	44 %
Harmonic output		in	40 dB
$R_S = R_1 = 50 \Omega$	any harmonic	min.	-50 dB
0 -		typ.	-50 UB
Input VSWR			
with respect to 50 Ω	VSWR	<	2.0 : 1

Stability

The module is stable with a load VSWR up to 5 (all phases) when operated within the following conditions:

$$V_{S1} = V_{S2} = 4.0 \text{ V}$$
 to 11.2 V; $P_D = 17$ to 70 mW; $f = 430$ to 470 MHz; $P_L = < 9.0 \text{ W}$ (matched)

Ruggedness

The module will withstand a load mismatch VSWR of 50 (all phases) for short period overload conditions, with PD, VS1 and VS2 at maximum values, providing the combination does not cause the matched RF output power rating to be exceeded ($T_h < 90$ °C).

Output power control

The module is designed to be operated at a constant output power of 5.0 W. The module is adjusted to produce nominal output power by reducing the first stage supply voltage VS1. If the module is to be used over a range of output power levels below 5.0 W, the first stage supply voltage should not be reduced below 4.0 V. If further reductions in power are needed this may be achieved by varying the drive power PD. For stable operation however, care must be taken to avoid operating the module outside the published stability conditions.

Mounting

To ensure good thermal transfer the module should be mounted onto a heatsink with a flat surface with heat-conducting compound applied between module and heatsink. The module is designed to be pressed against the heatsink by a sheet spring applying up to 50 N to the top surface of the module encapsulation. The leads of the devices may be soldered directly into a circuit using a soldering iron with a maximum temperature of 245 °C for not more than 10 s at a distance of at least 1 mm from the plastic.

Power rating

In general, it is recommended that the output power from the module under nominal conditions should not exceed 7 W in order to provide an adequate safety margin under fault conditions.

Fig.2 Load power derating; VSWR = 1 : 1.

Fig.3 Change in power gain as a function of heatsink temperature; VS1 = VS2 = 9.6 V; typical values.

Fig.4 Load power as a function of V_{S1} ; V_{S2} = 9.6 V; P_D = 35 mW; typical values.

Fig.5 Load power and efficiency as functions of drive power; VS1 = VS2 = 9.6 V; typical values.

Fig.6 Second and third harmonic distortions as functions of frequency; $V_{S1} = V_{S2} = 9.6 \text{ V}$; $P_D = 35 \text{ mW}$; typical values.

Fig.7 Load power and efficiency as functions of frequency; $V_{S1} = V_{S2}$; $P_D = 35$ mW; typical values.