The MMIC (Microwave Monolithic Integrated Circuits) are wide band integrated circuits often used as simple amplifiers, they are designed to replace the transistor and help the designer to build RF amplifiers. Loosely but realistically MMICs are the evolution of thick film ICs (in fact in this section are listed also some old thick film amplifiers).
Without going into technical detail, because it is available a very big quantity of documentation, in few words we can say that the MMIC is used to simplify an amplification chain without worrying about possible self oscillations, instability, impedance mismatching or the bias, the MMIC can solve all these problems. With MMICs design is made easier, securer and more repeatable, all models are matched nearly at $50 / 75 \Omega$ of input impedance.
MMICs are used to ease design process and improve the RF circuits repeatability, their implementation is very easy so the Ohm's law only is needed to calculate the other components of the circuits. Here are explained the 3 classical circuits for power supply and decuopling.
A) MMICs normally use the 4 leads configuration, input, output with power supply and two gound connections. Rarely some types have a separate power supply lead, some others have the bias lead to adjust the current.
B) The decoupling capacitors are used only to block the DC power supply, the value must be a short circuit at the desired frequency. Cb bypass capacitor is used only to short circuit the RF to avoid self oscillations of the MMIC and to avoid that possible noise can enter in the MMIC, the choice of this capacitor is very important if the MMIC has a high gain or there are more than one amplification stage.
C) The bias resistor has the purpose of lowering the power supply voltage from the available value to the right power supply value of the MMIC (for example from Vc 12 V to Vd 5 V)
D) It is always suggested to use an inductance, in this case the decoupling is increased on the power supply, it can be avoided in the case that the calculated R is so high that it is enough to obtain a good decoupling (for example $\mathrm{R}>$ $150 / 200 \Omega$). Instead the inductance must be inserted when the power supply voltage is similar to the working voltage of the MMIC (that is if $\mathrm{Vd}=\mathrm{Vc}$), in fact in this case it is not possible to insert the bias resistor on power supply and the decoupling is made by the inductance itself. The same if the power supply resistor has a too low value (up to $80 / 100 \Omega$).
E) To improve performaces of these devices, especially at higher frequencies, it is suggested to use SMD or with very short leads components in particular for all ground connections

	Example of calculation for the famous MAR6, assume to have $6 \mathrm{~V}(\mathrm{Vc})$ of power supply, from the MAR6 specifications we see that it works with 3.5 V of power supply (Vd) and a current of $16 \mathrm{~mA}\{\mathbf{V c}$ and $\mathbf{V d}$ in \mathbf{V} - Id in A \} R calculation $=(\mathrm{Vc}-\mathrm{Vd}):$ Id ($6-3,5): 0,016=150 \Omega$ In this case being R quite high we can avoid to put the decoupling inductance. We suggest to use Cd input and output without exceding the capacity because it is better that the circuit tends to attenuate at lower frequencies. (A capacitor in series behaves as a bland high pass filter).
	In case the power supply voltage is very close or equal to that of MMIC ($\mathrm{Vc}=\mathrm{Vd}$) it is not possible to use a bias resistor, in this case it is mandatory to use an inductance to separate the RF between the MMIC and the power supply, examples of L values: \min freq. $=1 \mathrm{MHz} \quad$ about $27 \mu \mathrm{H}-\min$ freq. $=10 \mathrm{MHz} \quad$ about $2.7 \mu \mathrm{H}$ \min freq. $=100 \mathrm{MHz}$ about $270 \mathrm{nH}-\min$ freq. $=1 \mathrm{GHz}$ about 27 nH
	This is the optimal circuit configuration because it is obtained the maximum possible decoupling, in fact it is summed the resistance value to the inductance reactance. The limiter resistor is useful also to permit a sort of limitation on the bias current and accordingly a higher tolerance in power supply voltage.

NOTE : in case of high value inductances $(>10 \mu \mathrm{H})$ should be considered a little residual resistance due to the wire of the inductance itself.

M.M.I.C. , Wide Band Amplifiers

Given the huge variety of MMIC devices, but especially the wide variety of performances and technical specifications, we decided to group all these devices in a table of 3 pages. To facilitate the search we have divided them according to their main characteristics:

Low cost and general purpose	low cost
Low noise	$\mathrm{NF}<3 \mathrm{~dB}$
High dynamic	medium output power $+10 /+17 \mathrm{dBm}$
High output power	$>17 \mathrm{dBm}>50 \mathrm{~mW}$
Very flat gain	it can be used on instrumentation to have flat gain on wide band
High reverse insulation	high S 12, ie high reverse insulation between output and input, for example as buffer for VCOs and oscillators
Variable gain	with pin for gain control
Differential amplifier	$<3.5 \mathrm{~V}$
Low voltage power supply	see table below
Other special feateures	

This table is used for a fast search of the device, other features will be then shown on following pages with prices and eventually a test report for MMICs considered more interesting.

MMICs selection guide

function	cod.	CASE	FREQ. GHz min - max	$\begin{array}{c\|} \hline \text { gain } \\ \max \mathrm{dB} \text { min } \\ \hline \end{array}$	out power dBm at GHz		$\begin{gathered} \mathbf{N F} \\ \mathrm{dB} \text { at GHz } \\ \hline \end{gathered}$		$3^{\circ} \text { orde }$ $\mathrm{dBm} \text { at }$	$\begin{aligned} & \text { er IP } \\ & G H z \end{aligned}$	pwr sup. V mA	
	AG101	SMD	$60 \mathrm{MHz}-3 \mathrm{GHz}$	$15 \quad 11$	+15	1	2.4	2	+28/+32	1	4.5	50
	ERA 1	plastic	up to 8 GHz	$12 \quad 10$	+11.5	2			+26	2	3.6	40
	ERA 2	plastic	up to 8 GHz	$16 \quad 12$	+12.4	2			+26	2	3.6	40
	SNA 286	plastic	DC	$15 \quad 11$	+14	2	5.7	2	+29	2	3.8	50
	INA 34063	SMD	DC	$\pm 20 \mathrm{~dB}$	+8	2	4.5	2	+18	2	3	30
	INA 52063	SMD	DC 2.5	$23 \quad 16$	+8	1	3.5	0.1	+20	1	5	30
	LMX 2119	SMD	$1.5 \quad 2.5$	20	+23,5	2					3.6	350
	MAR 1-MSA0186	plas-cer	DC 2.5	18	+2	0.5	5.5	0.5	+14	0.5	5	17
	MAR 2 - RAM2	plas-cer	DC 3.5	12.5	+5	1			+17	1	5	25
	MAR 3	plas-cer	DC	12.5	+10	1			+23	1	5	35
NERAL	MAR 4	plast.cer	DC	98	+12.5	1			+25.5	1	5.2	50
UR	MAR 6	plas-cer	DC 1.5	$20 \quad 13$	+2	1	3	0.5	+14	0.5	3.5	16
	MAR 8	plast-cer	DC	$27 \quad 16$	+12.5	1	3.3	1	+27	1	7.8	36
and	MAV 11	plastic	DC	$13 \quad 7.5$	+17.5	0.5	3.6	0.5	+30	0.5	5.5	60
	MGA 72543	SMD	up to 6 GHz	17	+12	5	1.5	4	+10	2	3	20
LOW	MGA 85563	SMD	0,8	$19 \quad 15$	+1	3	$1.6 \text { or }$ bandn		+12	3	3	20-30
COST	MSA 0711 e 0735	SMD	DC	13	+5.5	1	5	1	+18	1	4	22
	RF 2472	SMD	DC	21	+2	2	$\begin{aligned} & 1.4 \\ & 2 \\ & \hline \end{aligned}$	$\begin{gathered} 1.5 \\ 5 \end{gathered}$	+18		3	6
	SGA 2186	plastic	DC	$10 \quad 7.5$	+7	1.5	4.4	2	+19.5	2	2.2	20
	SGA 2286	plastic	DC	$15 \quad 10$	+7	2	3.5	2	+19	2	2.2	20
	SGA 2386	plastic	DC	1810	+7.5	2	3.3	2	+20	1.5	2.7	20
	SGA 2486	plastic	DC	$21 \quad 11$	+7.5	2	3.3	2	+20	2	2.7	20
	SGA 3286	plastic	DC	$15 \quad 10.5$	+11.5	1.5	3.8	2	+24	2	2.6	35
	SH 225	special	$1-900 \mathrm{MHz}$	$21 \quad 19$	+2	0.5	5.5	0.5			24	23
	μ PC 2709T	SMD	DC 2.5	$22 \quad 19$	+8	0.5	5	1			5	25
	μ PC 2771T	SMD	DC 2.5	$21 \quad 18$	+11.5	1	6	1			3	35

function	cod.	CASE	FREQ. GHz min - max	$\begin{array}{\|c\|} \hline \text { gain } \\ \operatorname{max~dB~min~} \end{array}$		out power dBm at GHz	$\begin{array}{\|c\|} \hline \mathbf{N F} \\ \mathrm{dB} \text { at GHz } \\ \hline \end{array}$	$\begin{aligned} & \hline 3^{\circ} \text { order IP } \\ & \text { dBm at GHz } \end{aligned}$	pwr sup. V mA	
\#	AG101	S M D	$60 \mathrm{MHz}-3 \mathrm{GHz}$	15	11	+15	2.42	+28/+32 1	4.5	50
	AM1 - AG102	SMD	$60 \mathrm{MHz}-3 \mathrm{GHz}$	15	11	+18 2	2.42	+33/+36 1	4.4	60-80
	AM50-0003	SMD	$800-1000 \mathrm{MHz}$			+18	1.2		3-8	20-60
	AM50-0004	SMD	$1.4-2 \mathrm{GHz}$			+18	1.4		3-8	20-45
	INA03184	plas-cer	DC 4	25	12	-1	2.51 .5	+7 1.5	3-5	10
	MAALSS0034	SMD	$70 \mathrm{MHz}-3 \mathrm{GHz}$	15	9	+23 2	1.62	+36 2	5	88
	MAAM12031 + 032	SMD	$1.7-2 \mathrm{GHz}$	20	13	+2/+7	1.7 / 1.8	+2/ +7	5	5/8
LOW \#	MGA 62563	SMD	up to 2.5 GHz	23	13	+ 17	0.91	+32.5	3-5	60
NOISE	MGA 72543	SMD	up to 6 GHz	17	9	+12 5	1.54	+10 2	3	20
	MGA 81563	SMD	0.56	12.5	10	+14.8 3	2.73	+27 2	3	42
	MGA 85563	SMD	0,8 6	19	15	+1 3	1.6 on all bandwidth	+12 3	3	20-30
$\begin{gathered} \text { NF } \leq 3 \mathrm{~dB} \\ \begin{array}{l} \#=\text { high } \\ \text { dynamic } \end{array} \end{gathered}$	MGA 86563	SMD	0.566 (8)	22	15	+4.3 4		+15 2.4	5	14
	MGA 86576	ceramic	0.510	23	12	+7 2.5	1.86	+16 4	4-10	16
	MAR 6	plas-cer	DC 1.5	20	13	+2 1	$3 \quad 0.5$	+14 0.5	3.5	16
	MGF 7002	metallic	0.81 .9	18	16	+10 1.6	2.5	+22 1	10/-6	90
	MGF 7003	ceram	0.11 .9	12	10	+10 1.8	<2.5	+24	3	30
	RF 2472	S M D	DC 6	21	9	+2 2	$\begin{array}{lc} & 1.4 \\ 2 & 1.5 \\ 2 & 5 \end{array}$	+18	3	6
	SGA 3586	plastic	DC 5	26	13	+13.5 1.5	2.512	+25.5 1.5	3.3	35
	SGA 4586	plastic	DC 5	26	10	+16/+13	1,8 1	+27 2	3.6	45
	SGA 5586	plastic	DC 4	26	14	+18/+15	2.62	+30 1.5	3.9	60
	UTO 1043	metallic	$5-1300 \mathrm{MHz}$	11	8.7	+9 1	2.50 .5	+22	12-15	25
HIGH DYNAMIC and MEDIUM POWER	ERA 1	plastic	up to 8 GHz	12	10	+11.5 2	--	+26	3.6	40
	ERA 2	plastic	up to 8 GHz	16	12	+12.4 2	--	+26 2	3.6	40
	ERA 3	plastic	up to 8 GHz	22	12	+11.5 2	--	+23 2	3.5	35
	ERA 4	plastic	up to 8 GHz	14	12	+16.8 2	--	+32 2	65	
	INA 10386	plastic	DC 4	26	14	from +12 to +14	3.81 .5	+23 1.5	45	
	MGA 64135	ceramic	0.510	14	8.6	+12 upto 8 GHz	--	--	8-11 50	
	MGA 72543	SMD	up to 6 GHz	17	9	+12	1.5 4 2.7 3	+10 2	20	
	MGA 81563	SMD	0.56	12.5	10	+14.8		+27 2	342	
	MAR 3 - VAM3	plas-cer	DC 3	12.5	8	+10	--	+23	4-6 35	
	MSA 0311-RAM3	SMD	DC 2.5	11.5	8	+10 0.5	--	+22	4-5.6 35	
	MAR4-MSA0436	ceramic	DC 3	8.5	6	+13 0.5	--	25.5	4-6 50	
	MAR8-MSA0870	plas-cer	DC 3	32	12	+13 0.	3.3	+27	6-9 36	
	NGA 286	plastic	DC 6	16	11	+15	3.42	+31	50	
	SGA 3286	plastic	DC 5	15	10.5	+11.5 1.5	3.8	+24 2	2.635	
$\geq+10 \mathrm{dBm}$	SGA 3386	plastic	DC 5	18	11	+11.5 1.5	3.5	+24 1.5	2.6	
($\geq 10 \mathrm{~mW}$)	SGA 3486	plastic	DC 5	23	12	+12.5 2	3.2	+25 1.5	2.9	35
	SGA 3586	plastic	DC 5	28	13	+13.5 1.5	2.5	+25.5 1.5	3.3	35
	SGA 4186	plastic	DC 5	10	8	+ 13.51 .5		+28/ +25	3.2	45
	SGA 4586	plastic	DC 5	26	10	+16/+13	--	+27 2	3.6	45
	SGA 5586	plastic	DC 4	26	14	+18/+15	2.62	$\begin{array}{\|ll\|} \hline+30 & 1.5 \\ \hline+29 & 2 \\ \hline+23 & 2 \\ \hline \end{array}$	3.960	
	SNA 286	plastic	DC 6	15	11	+14 2	--		3.83.8	50 35
	SNA 386	plastic	DC 4	22	15	+11 2	4.51			

continue, MMIC selection guide

function	cod.	CASE	$\begin{aligned} & \text { FREQ. GHz } \\ & \min -\max \\ & \hline \end{aligned}$	gain $\max \mathrm{dB}$ min	out power dBm at GHz	$\begin{array}{\|l\|} \hline \mathbf{N F} \\ \mathrm{dB} \text { at GHz } \end{array}$	$\begin{aligned} & 3^{\circ} \text { order IP } \\ & \mathrm{dBm} \text { at GHz } \end{aligned}$	pwr sup. V mA	
HIGH POWER$\begin{gathered} \geq+17 \mathrm{dBm} \\ (\geq 50 \mathrm{~mW}) \\ \#=\text { low } \\ \text { noise } \end{gathered}$	AM1 - AG102	S M D	$60 \mathrm{MHz}-3 \mathrm{GHz}$	$15 \quad 11$	+18 2	2.42	+33/+36	$\begin{array}{lll}4.4 & 60-80\end{array}$	
	CGY 2014	S M D	power MMIC, cellular dual band $900+1800 \mathrm{MHz}+35 /+32 \mathrm{dBm}$ out power						
	CGY 21	metallic	$20-1100 \mathrm{MHz}$	$20 \quad 15$	+19/+20 0.9	$4 \quad 0.8$	+32.5 0.8	5160	
	ERA 5	plastic	DC 6 (10)	$20 \quad 12$	+18 2	4.5	+33 2	565	
	ERA 6	plastic	DC 6 (10)	$\begin{array}{ll}11,5 & 10,5\end{array}$	+18 2	--	+36 2	5.570	
	GPD 405	metallic	$10-500 \mathrm{MHz}$	$15 \quad 12$	+23 0.4	$6 \quad 0.1$	+29 0.1	1590	
	CGY 52	S M D	$100 \quad 2.500$	$13 \quad 15$	+19 200-1800	4.81 .8	+32	4.5160	
	LMX 2119	SM D	1.52 .5	20	+23,5 2	-- --		3.6350	
	MAALSS0034	SMD	$70 \mathrm{MHz}-3 \mathrm{GHz}$	159	+23	1.6	+36 2	588	
	MAAMSS0049	S M D	250 MHz 4000	$20 \quad 11$	+28.5 2.4	3.502	+43 2	$5 \quad 250$	
	MAV 11	plastic	DC 2	$13 \quad 7.5$	+17.5 0.5	3.60 .5	+30 0.5	4.5-6 60	
	MGA 62563	S M D	up to 2.5 GHz	2313	+ 17	0.9	+32.5	3-5 60	
	MGA 82563	SMD	0.46	149	+17 2	2.22	+31 2	384	
	MGA 83563	SMD	0.56	$21 \quad 17$	+19 1-3	-- --	+29 1-6	$3 \quad 150$	
	MRFIC 1859	S M D	power MMIC, cellular dual band $900+1800 \mathrm{MHz}+34 /+32 \mathrm{dBm}$ out power						
	NGA 486	plastic	DC 5	$15 \quad 10$	+19/+18 0.5/2\|	4	+38/+34	4.880	
	PM 2107	plas smd	$2 \quad 2.6$	$26 \quad 20$	+26/30pk 2.4	-- --	-- --	+5V -1.2V	
	RF 2145	S M D	12	$25 \quad 20$	+26 1.8	-- --		4.5400	
	RF 2174-2175	S M D	power MMIC, cellular dual band 900 and $1800 \mathrm{MHz}+36 /+33 \mathrm{dBm}$						
	SNA 676	ceramic	dc 7	$11 \quad 7$	+18 2		+36 0.1-2	5.76	
	UTO 2013	metallic	$500-2000 \mathrm{MHz}$	10	+ 21	4.5		15100	
	VNA 25	S M D	0.502 .5	$18 \quad 14$	+18.2	5.5	+27	585	
VERY FLAT GAIN	ERA 1	plastic	DC 9-11	12-16	+12 2	--	+26 2	3.850	
	ERA 6	plastic	DC 6	11,5 10,5	+18 2	--	+36 2	5.570	
	INA 03184	plas-cer	DC 4	$25 \quad 12$	-1	2.51 .5	+7 1.5	3-5 10	
	INA 10386	plastic	DC 4	$26 \quad 14$	+12 to +14	3.81 .5	+23 1.5	645	
	MGA 81563	S M D	0.56	very flat gain up to about 2 GHz				$3 \quad 42$	
	MSA 0910	ceramic							
	MWA	metallic case, particular use for instrumentation and professional, various types available: low noise, high power, etc... dc -2 GHz							
	GPA.... GPD....								
	SH 225	special	2900 MHz	21	+2			$24 \quad 23$	
	SNA 286	plastic	quite flat form 100 MHz to 1.5 GHz						
	HPC 2709T	S M D	DC 2.5	2219	+8 0.5	5		$5 \quad 25$	
	HPC 2771T	SMD	DC 2.5	$21 \quad 18$	+11.5	6		$3 \quad 35$	
HIGH REVERSE INSULATION	INA 34063	SMD	DC 3	$\pm 20 \mathrm{~dB}$	reverse insulation $>30 \mathrm{~dB}$			$3 \quad 30$	
	HPC 2709T	SMD	DC 2.5	$22 \quad 19$	rev. insulation > 30dB low cost			$5 \quad 25$	
	MAX 2470-2175	SMD	$10-500 \mathrm{MHz}$	1315	rev. insul. $>50 \mathrm{~dB}$ VCO buffer			3-5.5 6	
	MGA 83563	SMD	0.56	$21 \quad 17$	insul. $<2 \mathrm{GHz}$	>35dB - >	2GHz 30dB	3.3150	
	SH 225	$1-900 \mathrm{MHz}$ very flat amplifier with 40dB of reverse insulation						$24 \quad 23$	
VARIABLE GAIN	CGY 120	gain control range $=50 \mathrm{~dB}$, bandwidth up to 2.5 GHz							
	IVA05208-14208	gain control range $=30 \mathrm{~dB}$ (IVA05208) -- 34 dB (IVA14208) more spec. see below							
	RF 2145	high power, gain control range $=40 \mathrm{~dB}$							
DIFFERENTIAL amplifier	IVA 05208	SMD	DC 2	$30 \quad 20$	group delay is within 400 pSec			4-6.5 35	
	IVA 14208	SMD	DC 3	2518				5-8 38	
LOW VOLTAGE $<3.5 \mathrm{~V}$	$\begin{aligned} & \text { GPD } 110-\text { INA34063 - INA03184 - MAR } 6-\text { MAX... }-\mu \text { PC } 2771 \\ & \text { MGA } 62563+7254+82563+83563+85563-\text { MGF } 7003-\text { MSA } 07 \ldots \\ & \text { SGA } 2186+2286+2386+3286+3386+3486 \end{aligned}$						see more detailed specifications in the next pages		
with	GPD 110	for very low frequencies starting from $50-100 \mathrm{KHz}$ up to $1.1 \mathrm{GHz}, \mathrm{Vmin} 2.5 \mathrm{~V}$							
	MGA 64135	high performances up to10 GHz, high output level, HI-REL professional ceramic case							
	MGA 72543	it has a switch inside to exclude it from the circuit							
features	MGA 86576	for microwave, ceramic case, works up to 10 GHz , low noise							
	MSA 0910	for instrumentation, limited but ultra-flat gain 0.1-4 GHz HI- REL special case							
	IDA 07318	1.5 Gbit driver for laser or led, TX datas on fiber optic							
	MAR1-MSA 0185	very low VSWR up to 3 GHz on both input and output ports							
	VNA 25	it has already inside two dc block capacitors and the bias network							

Low noise high dynamic M.M.I.C.

The following products AM-1, AG-101G, AG-102 and MAALSS0034 are MMICs from the prestigious Watkins Johanson and MaCom brand for high dynamic range applications (+16 to +22 dBm), but with a very low noise (1,6 to $2,5 \mathrm{dBNF}$).
The case is the consolidated SOT89 that guaratees a good dissipation even when it is used with a fair current. These MMICs implement GaAs-FET technology and they are suitable for many applications, especially as post-amplifier after very low noise stages.
For example, suppose to use them after a MGA-62563 MMIC or a MAR6, you will get some more decibel of gain greatly increasing the dynamic with an output level up to $+16 /+22 \mathrm{dBm}$. Another interesting application is as a driver for a broadband power module like BGD802, in fact the BGD802 to give the output power of 1 W it requires about 30 mW of input, so these MMICs are the right choice also as TX driver. The application diagram is extremely simple, just the usual dc-block capacitor and a choke for power supply are needed.
In conclusion, the AM-1, AG-102, AG101G and MAALSS0034 MMICs can be used for all applications requiring good dynamic associated with a low noise, as drivers for a higher power stage but also as a buffer stage with medium gain suitable for any need.

MMIC:	AM-1	AG-102 AG-101G	MAALSS0034, some applications	
MGA-62563	+	AM-1 AG-102 AG-101G MAALSS0034 \square	=	ultra low noise high dynamic aplifier $100 \mathrm{MHz}-2.5 \mathrm{GHz} \mathrm{NF} 1.1-1.5 \mathrm{~dB}$ gain $20-30 \mathrm{~dB}$ output $+16 /+22 \mathrm{dBm}, \mathrm{OIP} 3+33 /+36 \mathrm{dBm}$
MAR-6	+		=	Iow noise amplifier $\begin{gathered} 50 / 70 \mathrm{MHz}-1.5 \mathrm{GHz} \text { NF } 2.5-3.5 \mathrm{~dB} \\ \text { gain } 22-35 \mathrm{~dB} \\ \text { output }+18 \mathrm{dBm}, \text { OIP3 }+26 \mathrm{dBm} \end{gathered}$
AM-1 AG-102 AG-101G MAALSS0034	+	wide band power module, example BGD-802	=	wide band power amplifier $\begin{gathered} 50 / 70 \mathrm{MHz}-1 \mathrm{GHz} \# \\ \text { output } 0,5-1 \mathrm{~W} \mathrm{\#} \\ \text { gain about } 30 \mathrm{~dB} \# \\ \text { \# depending on the used power module } \end{gathered}$

AM-1 AG-102 AG-101G MAALSS0034	+	-- power transistor or -- power module or -- power MMIC	=	medium-high Depending o	
MMIC AM-1 AG-102 AG-101G MAALSS0034 typical application diagram					
		MMIC : AM	AG	AG-101G	M
Frequency range		$60-3000 \mathrm{MHz}$			
Gain		$10-15 \mathrm{~dB}$			
Ouput P1dB		from +16 dBm to +22 dBm (depending on model)			
Output IP3		+39 dBm / +33 dBm (depending on model)			
Noise Figure		$1,6-2.6 \mathrm{~dB}$			

medium power broadband MMICs and Modules

The table indicates the continuous output power (P 1 dB), expressed in dBm and in mW , and the frequency range

From the diagram it is possible to get the device number, below the comparison chart "NUMBER = MMIC"
1 = CGY 21 over $50 \mathrm{MHz}+$ GPA $505 \mathrm{dc}-500 \mathrm{MHz}(\max 1 \mathrm{GHz})---2=$ ERA 5 up to $5.5 \mathrm{GHz}+$ VNA 25 up to 2.5 GHz 3 = SNA 676 ---- $4=$ RF $2145---5=$ LMX 2119M ---- $6=$ PM $2107---7=$ MAAMSS0049 ---- 8 = MAV 11 $9=$ MGA $83563---10=$ GPD $405---11=$ BGD 802 \# ---- $12=$ MHW 9242 \# ---- 14 = CGY 52
\# they are power modules, the others are MMICs listed in this section

high performances professional MMICs

These particular ICs are used in professional field, such as final stage or driver in laboratory RF signal generators, military RF-VHF front-end receivers for example Watkins - Johnson, Rohde \& Schwarz, A class amplifiers, and laboratory and so on. They have better features than common MMICs, such as a low input-output VSWR, constant phase throughout the whole band with a fair group delay, P1dB, IP3 and IP2 specified and guaranteed, etc... They are typically used in wide band circuits and also where is the need of a very fast response as recovery time.
Some have the two dc-block capacitors already inside which greatly facilitates their use, other models have not the capacitors inside (which have to be added externally) this is an advantage especially for use at low frequencies and / or for applications that must be customized considering that they can virtually operate starting by dc.

gain - frequency		NF	P 1dB	IP3	IP2	reverse insul.	pwr. supply	cod.	
optimal	max								
$\begin{gathered} \mathrm{dB} \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{MHz} \end{gathered}$	dBm	dBm	dBm	dB	V_{mA}		
$\begin{gathered} 20 \\ 100-900 \end{gathered}$	$\begin{array}{c\|} \hline 15 \\ 30-2000 \\ \hline \end{array}$	$\begin{gathered} 3.9 \\ 100-900 \end{gathered}$	+ 19	+ 32			$\begin{array}{\|l\|} \hline 4.5 \\ 160 \end{array}$	CGY 21	TO39 case with small heat sink $9 \times 21 \mathrm{~mm}$
$\begin{gathered} 15 \\ 0.1-400 \end{gathered}$	$\begin{gathered} 12 \\ 01-850 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 0.1-400 \\ \hline \end{gathered}$	-2	+ 12	+ 14		2.510	GPD 110	group delay 0.3 nS
$\begin{gathered} 15 \\ 5-400 \end{gathered}$	$\begin{gathered} 12 \\ 3-800 \end{gathered}$	$\begin{aligned} & 4-4.5 \\ & 5-400 \end{aligned}$	-2	+ 10		> 20	$15 \quad 10$	$\begin{aligned} & \text { GPD } 401 \\ & \text { GPD } 461 \text { \# } \end{aligned}$	low noise RX stage or driver
$\begin{gathered} 14 \\ 5-400 \end{gathered}$	$\begin{aligned} & 12 \\ & -800 \end{aligned}$	$\begin{aligned} & 5.5-6 \\ & 5-400 \end{aligned}$	+ 7	+ 19	+ 25	> 20	$15 \quad 24$	$\begin{aligned} & \text { GDP } 402 \\ & \text { GPD } 462 \text { \# } \\ & \hline \end{aligned}$	intermediate stage
$\begin{gathered} 15 \\ 10-400 \end{gathered}$	$\begin{aligned} & 13 \\ & -900 \end{aligned}$	$\begin{gathered} 5.5 \\ 5-400 \\ \hline \end{gathered}$	+ 23	$\begin{gathered} +351 \\ +30 \end{gathered}$	+ 34	>20	$15 \quad 9$	GPD 405	high power with still fair NF
$\begin{gathered} 8 \\ \text { dc }-1000 \end{gathered}$		6.7	+11.5	+ 17	+ 27		330	MWA 320 \#	group delay < 0.6 ns Imd -58 dB out 1 mW , In+Out VSWR typ. 1.5:1
$\begin{gathered} 6.2 \\ \mathrm{dc}-1000 \end{gathered}$		9	+15.2	+ 25	+31		$\begin{aligned} & 4-5 \\ & 60-80 \end{aligned}$	MWA 330 \#	group delay < 0.6 ns Imd - 62dB out 5 mW , In+Out VSWR typ. 1.5:1
$\begin{array}{\|c\|} \hline 10.5 \\ 10-1000 \\ \hline \end{array}$	$\begin{aligned} & \hline 8.5 \\ & -1300 \end{aligned}$	$\begin{array}{c\|} \hline 2-3 \\ 10-1000 \\ \hline \end{array}$	+ 8	+ 20	+28	16-17	$\begin{array}{ll} 15 & \\ \hline \end{array}$	UTO 1043R	High Reliability version
$\begin{gathered} 10 \\ 500-2000 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 9.5 \\ 400-2100 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.5 \\ 500-2000 \\ \hline \end{array}$	+ 21	+ 33		16-17	$15 \quad 100$	UTO 2013	typical group delay 0.5 nS

MMICs with dc-block capacitors already inside
CGY 21
GPD 110
GPD 401
GPD 402
GPD 405
UTO 1043R UTO 2013

NOTE \#

MMICs without dc-block capacitors already inside (to add externally)

GPD 461
GPD 462
MWA 320
MWA 330

